

Industrial Automation Headquarters

Delta Electronics, Inc. Taoyuan Technology Center 18 Xinglong Road, Taoyuan District, Taoyuan City 33068, Taiwan (R.O.C.) TEL: 886-3-362-6301 / FAX: 886-3-371-6301

Asia

Delta Electronics (Shanghai) Co., Ltd No.182 Minyu Road, Pudong Shanghai, People's Republic of China Post code : 201209 TEL: 86-21-68723988 / FAX: 86-21-6872-3996 Customer Service: 400-820-9595

Delta Electronics (Japan), Inc. Tokyo Office 2-1-14 Minato-ku Shibadaimon, Tokyo 105-0012, Japan TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc. 1511, Byucksan Digital Valley 6-cha, Gasan-dong, Geumcheon-gu, Seoul, Korea, 153-704 TEL: 82-2-515-5303 / FAX: 82-2-515-5302

Delta Electronics Int'I (S) Pte Ltd. 4 Kaki Bukit Ave 1, #05-05, Singapore 417939 TEL: 65-6747-5155 / FAX: 65-6744-9228

Delta Electronics (India) Pvt. Ltd. Plot No 43 Sector 35, HSIIDC Gurgaon, PIN 122001, Haryana, India TEL: 91-124-4874900 / FAX : 91-124-4874945

Delta Electronics (Thailand) Public Company Limited 909 Soi 9, Moo 4,Bangpoo Industrial Estate(Epz) Pattana 1rd., Tambol Phraksa Amphur Muang, Samutprakarn 10280 Thailand TEL: 66(0)2-709-2800

Delta Energy Systems Austral Pty Ltd. Unit 20-21, 45 Normanby rd, Notting Hill Vic 3168, Australia TEL: 61-3-9543-3720

Americas Delta Products Corporation (USA) Raleigh Office P.O. Box 12173, 5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: 1-919-767-3800 / FAX: 1-919-767-3969

Delta Greentech (Brasil) S.A. Sao Paulo Office Rua Itapeva, 26 - 3° andar Edificio Itapeva One-Bela Vista 01332-000-São Paulo-SP-Brazil TEL: 55-11-3568-3855 / FAX: 55-11-3568-3865

Delta Electronics Int. Mexico Mexico Office Via Dr. Gustavo Baz 2160, La Loma C.P. 54060, Estado de México TEL: 55-2628-3015

*We reserve the right to change the information in this manual without prior notice.

EMEA

Delta Electronics (Netherlands) B.V. Eindhoven Office De Witbogt 20, 5652 AG Eindhoven, The Netherlands TEL: 31 (0) 40-8003800 / FAX: 31 (0) 40-8003898 MAIL: Sales.IA.EMEA@deltaww.com MAIL: Sales.IA.Benelux@deltaww.com

Delta Energy Systems (France) S.A ZI du bois Chaland 2 15 rue des Pyrénées, Lisses 91056 Evry Cedex MAIL: Sales.IA.France@deltaww.com

Delta Energy Systems (Spain) S.L. Ctra. De Villaverde a Vallecas, 265 1º Dcha Ed. Hormigueras – P.I. de Vallecas 28031 Madrid C/Llul, 321-329 (Edif. CINC) | 22@Barcrelona | 08019 Barcelona MAIL: Sales.IA.Iberia@deltaww.com

Delta Energy Systems Srl (Italy) Via Senigallia 18/2 – 20161 Milano (MI) Piazza Grazioli 18 – 00186 ROMA MAIL: Sales.IA.Italy@deltaww.com

Delta Energy Systems (Germany) GmbH Coesterweg 45, D-59494 Soest MAIL: Sales.IA.DACH@deltaww.com

Delta Energy Systems LLC (CIS) Vereyskaya Plaza II, office 112 Vereyskaya str. 17 121357 Moscow MAIL: Sales.IA.RU@deltaww.com

Delta Greentech Ltd. (Turkiye) Şerifali Mevkii Barbaros Bulvari Söyleşi Sokak No:19 K:1 Yukari Dudullu 34775 Ümraniye İstanbul Sarigazi V.D 2740624765 MAIL: Sales.IA.Turkey@delta-emea.com

Delta Energy Systems (AG Dubai BR) P.O. Box 185668, Gate 7, 3rd Floor, Hamarain Centre, Dubai, United Arab Emirates MAIL: Sales.IA.MEA@deltaww.com

Delta Fan Pump Vector Control Drive **CP2000** Seri es 5 P Manua

Delta Fan/Pump Vector Control Drive CP2000 Series User Manual

PLEASE READ PRIOR TO INSTALLATION FOR SAFETY.

- AC input power must be disconnected before any wiring to the AC motor drive is made.
- ☑ Even if the power has been turned off, a charge may still remain in the DC-link capacitors with hazardous voltages before the POWER LED is OFF. Please do not touch the internal circuit and components.
- ☑ There are highly sensitive MOS components on the printed circuit boards. These components are especially sensitive to static electricity. Please do not touch these components or the circuit boards before taking anti-static measures.
- ☑ Never reassemble internal components or wiring.
- Ground the AC motor drive using the ground terminal. The grounding method must comply with the laws of the country where the AC motor drive is to be installed.
- ☑ DO NOT install the AC motor drive in a place subjected to high temperature, direct sunlight and inflammables.
- ☑ Never connect the AC motor drive output terminals U/T1, V/T2 and W/T3 directly to the AC mains circuit power supply.
- ☑ The rated voltage of the AC motor drive must be ≤ 240V for 230 series, and ≤ 480V for 460 series and the current should be less than 5000A RMS (40HP (30kW) should be less than 10000A RMS).
- ☑ Only qualified persons are allowed to install, wire and maintain the AC motor drives.
- ☑ Even if the 3-phase AC motor is stop, a charge may still remain in the main circuit terminals of the AC motor drive with hazardous voltages.
- ☑ The performance of electrolytic capacitor will degrade if it is not charged for a long time. It is recommended to charge the drive which is stored in no charge condition every 2 years for 3~4 hours to restore the performance of electrolytic capacitor in the motor drive. Note: When power up the motor drive, use adjustable AC power source (ex. AC autotransformer) to charge the drive at 70%~80% of rated voltage for 30 minutes (do not run the motor drive). Then charge the drive at 100% of rated voltage for an hour (do not run the motor drive). By doing these, restore the performance of electrolytic capacitor before starting to run the motor drive. Do NOT run the motor drive at 100% rated voltage right away.
- ☑ Pay attention to the following when transporting and installing this package (including wooden crate, wood stave and carton box)
 - If you need to sterilize, deworm the wooden crate or carton box, please do not use steamed smoking sterilization or you will damage the VFD. The warranty does not covered VFD damaged by steamed smoking sterilization.
 - 2. Please use other ways to sterilize or deworm.
 - 3. You may use high temperature to sterilize or deworm. Leave the packaging materials in an environment of over 56°C for 30 minutes.
- ☑ Connect the drive to a 3-phase three-wire or 3-phase four-wire Wye system to comply with UL standards.

☑ Since the leakage current of the motor drive is higher than 3.5 mA a.c. or 10 mA d.c., the minimum specification of grounding protection must comply with the laws of the country where the AC motor drive is to be installed, or grounding based on IEC61800-5-1.

- For a detailed explanation of the product specifications, the cover or the safety shields will be disassembled on some pictures or graphics. When the product is put to operation, please install the top cover and safety shield and ensure correct wiring. Refer to the manual to ensure safe operation.
- The figures in this instruction are for reference only, they may be slightly different from your actual drive, but it will not affect your customer rights.
- The content of this manual may be revised without prior notice. Please consult our distributors or download the most updated version at http://www.delta.com.tw/industrialautomation

Table of Contents

CHAPTER 1 INTRODUCTION	1-1
1-1 Nameplate Information	1-2
1-2 Model Name	1-3
1-3 Serial Number	1-3
1-4 Apply After Service by Mobile Device	1-4
1-5 RFI Jumper	1-5
1-6 Dimensions	1-9
CHAPTER 2 INSTALLATION	2-1
CHAPTER 3 UNPACKING	3-1
3-1 Unpacking	3-2
3-2 The Lifting Hook	3-14
CHAPTER 4 WIRING	4-1
4-1 System Wiring Diagram	4-3
4-2 Wiring	4-4
CHAPTER 5 MAIN CIRCUIT TERMINALS	5-1
5-1 Main Circuit Diagram	5-4
5-2 Specifications of Main Circuit Terminals	5-7
CHAPTER 6 CONTROL TERMINALS	6-1
6-1 Remove the Cover for Wiring	6-4
6-2 Specifications of Control Terminal	6-6
6-3 Remove the Terminal Block	6-8
CHAPTER 7 OPTIONAL ACCESSORIES	7-1
7-1 Brake Resistors and Brake Units Selection Chart	7-2
7-2 Non-fuse Circuit Breaker	7-8
7-3 Fuse Specification Chart	7-10
7-4 AC/DC Reactor	7-12
7-5 Zero Phase Reactor	7-37
7-6 EMC Filter	7-40
7-7 Digital Keypad	7-52
7-8 Panel Mounting	7-56
7-9 Conduit Box Kit	7-58
7-10 Fan Kit	7-66
7-11 Flange Mounting Kit	7-82
7-12 USB/RS-485 Communication Interface IFD6530	7-98

CHAPTER 8 OPTION CARDS	8-1
8-1 Option Card Installation	8-2
8-2 EMC-D42A (I/O Extension Card)	8-9
8-3 EMC-D611A (I/O Extension Card)	8-9
8-4 EMC-R6AA (Relay Extension Card)	8-10
8-5 CMC-MOD01 (Communication Extension Card)	8-11
8-6 CMC-PD01 (Communication Extension Card)	8-15
8-7 CMC-DN01 (Communication Extension Card)	8-17
8-8 CMC-EIP01	8-20
8-9 EMC-COP01 (Communication Extension Card)	8-25
8-10 EMC-BPS01 (24V Power Extension Card)	8-26
8-11 Delta Standard Fieldbus Cables	8-27
CHAPTER 9 SPECIFICATIONS	9-1
9-1 230V Series	9-2
9-2 460V Series	9-3
9-3 575V Series	9-6
9-4 690V Series	9-7
9-5 Environment for Operation, Storage and Transportation	9-10
9-6 Specification for Operation Temperature and Protection Level	9-11
9-7 Derating of Ambient Temperature and Altitude	9-12
CHAPTER 10 DIGITAL KEYPAD	10-1
CHAPTER 10 DIGITAL KEYPAD	10-1 10-2
CHAPTER 10 DIGITAL KEYPAD 10-1 Descriptions of Digital Keypad 10-2 Function of Digital Keypad KPC-CC01	10-1 10-2 10-5
CHAPTER 10 DIGITAL KEYPAD 10-1 Descriptions of Digital Keypad 10-2 Function of Digital Keypad KPC-CC01 10-3 TPEditor Installation Instruction	10-1 10-2 10-5 10-20
CHAPTER 10 DIGITAL KEYPAD 10-1 Descriptions of Digital Keypad 10-2 Function of Digital Keypad KPC-CC01 10-3 TPEditor Installation Instruction 10-4 Fault Code Description of Digital Keypad KPC-CC01	10-1 10-2 10-5 10-20 10-29
CHAPTER 10 DIGITAL KEYPAD	10-1 10-2 10-5 10-20 10-29 10-33
CHAPTER 10 DIGITAL KEYPAD 10-1 Descriptions of Digital Keypad 10-2 Function of Digital Keypad KPC-CC01 10-3 TPEditor Installation Instruction 10-4 Fault Code Description of Digital Keypad KPC-CC01 10-5 Unsupported Functions when using TPEditior on KPC-CC01 Keypad CHAPTER 11 SUMMARY OF PARAMETERS	
CHAPTER 10 DIGITAL KEYPAD 10-1 Descriptions of Digital Keypad 10-2 Function of Digital Keypad KPC-CC01 10-3 TPEditor Installation Instruction 10-4 Fault Code Description of Digital Keypad KPC-CC01 10-5 Unsupported Functions when using TPEditior on KPC-CC01 Keypad CHAPTER 11 SUMMARY OF PARAMETERS 00 Drive Parameters.	
CHAPTER 10 DIGITAL KEYPAD	
CHAPTER 10 DIGITAL KEYPAD	
CHAPTER 10 DIGITAL KEYPAD 10-1 Descriptions of Digital Keypad	
CHAPTER 10 DIGITAL KEYPAD 10-1 Descriptions of Digital Keypad	
CHAPTER 10 DIGITAL KEYPAD 10-1 Descriptions of Digital Keypad	
CHAPTER 10 DIGITAL KEYPAD 10-1 Descriptions of Digital Keypad	
CHAPTER 10 DIGITAL KEYPAD	
CHAPTER 10 DIGITAL KEYPAD	
CHAPTER 10 DIGITAL KEYPAD	
CHAPTER 10 DIGITAL KEYPAD	

12 PUMP Parameters	11-42
13 Application Parameters by Industry	11-43
CHAPTER 12 DESCRIPTIONS OF PARAMETER SETTING	
12-1 Descriptions of Parameter Setting	12.1-00-1
00 Drive Parameters	12.1-00-1
01 Basic Parameters	12.1-01-1
02 Digital Input/ Output Parameters	12.1-02-1
03 Analog Input/ Output Parameters	12.1-03-1
04 Multi-step Speed Parameters	12.1-04-1
05 Motor Parameters	
06 Protection Parameters	12.1-06-1
07 Special Parameters	
08 High-function PID Parameters	12.1-08-1
09 Communication Parameters	12.1-09-1
10 Speed Feedback Control Parameters	12.1-10-1
11 Advanced Parameters	12.1-11-1
12 PUMP Parameters	12.1-12-1
13 Application Parameters by Industry	12.1-13-1
12-2 Adjustment & Application	12.2-1
CHAPTER 13 WARNING CODES	13-1
CHAPTER 14 FAULT CODES AND DESCRIPTIONS	14-1
CHAPTER 14 FAULT CODES AND DESCRIPTIONS CHAPTER 15 CANOPEN OVERVIEW	14-1 15-1
CHAPTER 14 FAULT CODES AND DESCRIPTIONS CHAPTER 15 CANOPEN OVERVIEW	14-1 15-1 .15-3
CHAPTER 14 FAULT CODES AND DESCRIPTIONS CHAPTER 15 CANOPEN OVERVIEW	14-1 15-1
CHAPTER 14 FAULT CODES AND DESCRIPTIONS CHAPTER 15 CANOPEN OVERVIEW 15-1 CANopen Overview. 15-2 Wiring for CANopen. 15-3 CANopen Communication Interface Description.	
CHAPTER 14 FAULT CODES AND DESCRIPTIONS CHAPTER 15 CANOPEN OVERVIEW 15-1 CANopen Overview. 15-2 Wiring for CANopen. 15-3 CANopen Communication Interface Description. 15-4 CANopen Supporting Index	
CHAPTER 14 FAULT CODES AND DESCRIPTIONS CHAPTER 15 CANOPEN OVERVIEW	
CHAPTER 14 FAULT CODES AND DESCRIPTIONS CHAPTER 15 CANOPEN OVERVIEW 15-1 CANopen Overview. 15-2 Wiring for CANopen. 15-3 CANopen Communication Interface Description. 15-4 CANopen Supporting Index 15-5 CANopen Fault Code . 15-6 CANopen LED Function.	
CHAPTER 14 FAULT CODES AND DESCRIPTIONS CHAPTER 15 CANOPEN OVERVIEW 15-1 CANopen Overview. 15-2 Wiring for CANopen. 15-3 CANopen Communication Interface Description. 15-4 CANopen Supporting Index 15-5 CANopen Fault Code . 15-6 CANopen LED Function. CHAPTER 16 PLC FUNCTION APPLICATIONS	
CHAPTER 14 FAULT CODES AND DESCRIPTIONS CHAPTER 15 CANOPEN OVERVIEW	
CHAPTER 14 FAULT CODES AND DESCRIPTIONS CHAPTER 15 CANOPEN OVERVIEW	
CHAPTER 14 FAULT CODES AND DESCRIPTIONS CHAPTER 15 CANOPEN OVERVIEW	
CHAPTER 14 FAULT CODES AND DESCRIPTIONS CHAPTER 15 CANOPEN OVERVIEW	
CHAPTER 14 FAULT CODES AND DESCRIPTIONS CHAPTER 15 CANOPEN OVERVIEW	
CHAPTER 14 FAULT CODES AND DESCRIPTIONS CHAPTER 15 CANOPEN OVERVIEW	
CHAPTER 14 FAULT CODES AND DESCRIPTIONS CHAPTER 15 CANOPEN OVERVIEW	
CHAPTER 14 FAULT CODES AND DESCRIPTIONS CHAPTER 15 CANOPEN OVERVIEW	
CHAPTER 14 FAULT CODES AND DESCRIPTIONS CHAPTER 15 CANOPEN OVERVIEW	

	16-11 Modbus Remote IO Control Applications (use MODRW)
	16-12 Calendar Functions
	CHAPTER 17 INTRODUCTION TO BACnet
	CHAPTER 18 SAFE TORQUE OFF FUNCTION
A-1	APPENDIX A. PUBLICATION HISTORY

Application Control Board: V2.03 Keypad: V1.10

Chapter 1 Introduction

- 1-1 Nameplate Information
- 1-2 Model Name
- 1-3 Serial Number
- 1-4 Apply After Service by Mobile Device
- 1-5 RFI Jumper
- 1-6 Dimensions

Receiving and Inspection

After receiving the AC motor drive, please check for the following:

- 1. Please inspect the unit after unpacking to ensure it was not damaged during shipment. Make sure that the part number printed on the package corresponds with the part number indicated on the nameplate.
- 2. Make sure that the mains voltage is within the range as indicated on the nameplate. Please install the AC motor drive according to this manual.
- 3. Before applying the power, please make sure that all devices, including mains power, motor, control board and digital keypad, are connected correctly.
- 4. When wiring the AC motor drive, please make sure that the wiring of input terminals "R/L1, S/L2, T/L3" and output terminal "U/T1, V/T2, W/T3" are correct to prevent damage to the drive.
- 5. When power is applied, select the language and set parameters via the digital keypad (KPC-CC01). When executing a trial run, please begin with a low speed and then gradually increase the speed until the desired speed is reached.

1-1 Nameplate Information:

1-2 Model Name:

1-3 Serial Number:

1-4 Apply After Service by Mobile Device

1-4-1 Location of Service Link Label

Frame A~H

Service link label (Service Label) will be pasted on the upper-right corner of the side where keypad is installed on the case body, as below drawing shown:

1-4-2 Service Link Label

Scan QR Code to apply

- 1. Find out the QR code sticker (as above shown).
- 2. Using a Smartphone to run a QR Code reader APP.
- Point your camera to the QR Code. Hold your camera steady so that the QR code comes into focus.
- 4. Access the Delta After Service website.
- 5. Fill your information into the column marked with an orange star.
- 6. Enter the CAPTCHA and click "Submit" to complete the application.

Cannot find out the QR Code?

- 1. Open a web browser on your computer or smart phone.
- 2. Key in https://service.deltaww.com/ia/repair in address bar and press enter
- 3. Fill your information into the columns marked with an orange star.
- 4. Enter the CAPTCHA and click "Submit" to complete the application.

1-5 RFI Jumper

- (1) In the drive there are Varistor / MOVs, which are connected from phase to phase and from phase to ground, to protect the drive against mains surges or voltage spikes. Because the Varistors / MOVs from phase to ground are connected to ground via the RFI jumper, the protection will be ineffective when the RFI jumper is removed.
- (2) In the models with built-in EMC filter the RFI jumper connects the filer capacitors to ground to form a return path for high frequency noise to isolate the noise from contaminating the mains power. Removing the RFI jumper strongly reduces the effect of the built-in EMC filter.
- (3) Although a single drive complies with the international standards for leakage current, an installation with several drives with built-in EMC filter can trigger the RCD. Removing the RFI jumper helps, but the EMC performance of each drive would is no longer guaranteed.

Frame A~C

Screw Torque: 8~10kg-cm / [6.9~8.7 lb -in.] / [0.8~1.0 Nm]

Loosen the screws and remove the MOV-PLATE. Fasten the screws back to the original position after MOV-PLATE is removed.

Frame D0~H

Isolating main power from ground:

When the power distribution system of the drive is a floating ground system (IT) or an asymmetric ground system (TN), the RFI Jumper must be removed. Removing the RFI Jumper disconnects the internal capacitors from ground to avoid damaging the internal circuits and to reduce the ground leakage current.

Important points regarding ground connection

- ☑ To ensure the safety of personnel, proper operation, and to reduce electromagnetic radiation, the drive must be properly grounded during installation.
- \blacksquare The diameter of the cables must comply with the local safety regulations.
- ☑ The shield of shielded cables must be connected to the ground of the drive to meet safety regulations.
- \square The shield of shielded power cables can only be used as the ground for equipment when the aforementioned points are met.
- ☑ When installing more drives, do not connect the grounds of the drives in series but connect each drive to ground via one single point.

Pay particular attention to the following points:

- $\ensuremath{\boxtimes}$ Do not remove the RFI jumper while the power is on.
- ☑ Removing the RFI jumper will also disconnect the built-in EMC filter capacitors. Compliance with the EMC specifications is no longer guaranteed.
- \square The RFI jumper may not be removed if the mains power is a grounded power system.
- ☑ The RFI jumper must be removed while conducting high voltage insulation tests. When conducting a high voltage insulation test to the entire facility, the mains power and the motor must be disconnected if the leakage current is too high.

Floating Ground System (IT Systems)

A floating ground system is also called an IT system, an ungrounded system, or a high impedance/resistance (greater than 30 Ω) grounded system.

- ☑ Disconnect the RFI Jumper.
- ☑ Check whether there is excess electromagnetic radiation affecting nearby low-voltage circuits.
- ☑ In some situations, the transformer and cable naturally provide enough suppression. If in doubt, install an extra electrostatic shielded cable on the power supply side between the main circuit and the control terminals to increase security.
- ☑ Do not install an external EMC filter. The EMC filter is connected to ground through the filter capacitors, thus connecting power input to ground. This is very dangerous and can easily damage the drive.

Asymmetric Ground System (Corner Grounded TN Systems)

Caution: Do not cut the RFI jumper while the input terminal of the AC motor drive carries power.

In the following four situations, the RFI jumper must be removed. This is to prevent the system from grounding through the RFI capacitor, damaging the AC motor drive.

1-6 Dimensions

Frame A

VFD007CP23A-21; VFD015CP23A-21; VFD022CP23A-21; VFD037CP23A-21; VFD055CP23A-21; VFD007CP43A-21; VFD015CP43B-21; VFD022CP43B-21; VFD037CP43B-21; VFD040CP43A-21; VFD055CP43B-21; VFD075CP43B-21; VFD007CP4EA-21; VFD015CP4EB-21; VFD022CP4EB-21; VFD037CP4EB-21; VFD015CP53A-21; VFD022CP53A-21; VFD037CP53A-21; VFD037CP42A-21; VFD037CP42A-21

									Unit.	nini [inch]
Frame	W	Н	D	W1	H1	D1*	S1	Φ1	Ф2	Ф3
А	130.0	250.0	170.0	116.0	236.0	45.8	6.2	22.2	34.0	28.0
	[3.12]	[9.04]	[0.09]	[4.57]	[9.29]	[1.00]	[0.24]	[0.07]	[1.54]	[1.10]
									D1*: Flang	e mounting

Frame B

VFD075CP23A-21; VFD110CP23A-21; VFD150CP23A-21; VFD110CP43B-21; VFD150CP43B-21; VFD185CP43B-21; VFD110CP4EB-21; VFD150CP4EB-21; VFD185CP4EB-21; VFD055CP53A-21; VFD075CP53A-21; VFD110CP53A-21; VFD150CP53A-21

									Unit:	mm [inch]
Frame	W	Н	D	W1	H1	D1*	S1	Φ1	Ф2	Ф3
В	190.0	320.0	190.0	173.0	303.0	77.9	8.5	22.2	34.0	43.8
	[7.48]	[12.60]	[7.48]	[6.81]	[11.93]	[3.07]	[0.33]	[0.87]	[1.34]	[1.72]
		,								

D1*: Flange mounting

D1

Ð

θ

Frame C

С

[9.84]

[15.75]

[8.27]

[9.09]

VFD185CP23A-21; VFD220CP23A-21; VFD300CP23A-21; VFD220CP43A-21; VFD300CP43B-21; VFD370CP43B-21; VFD220CP4EB-21; VFD300CP4EB-21; VFD370CP4EB-21; VFD185CP63A-21; VFD220CP63A-21; VFD300CP63A-21; VFD370CP63A-21

D1*: Flange mounting

[1.34]

Φ3

50.0

[1.97]

[15.00]

[3.66]

[0.33]

[0.87]

Frame D

D0-1: VFD450CP43S-00; VFD550CP43S-00

|--|

Frame	W	H1	D	W1	H2	H3	D1*	D2	S1	S2	
D0 1	280.0	500.0	255.0	235.0	475.0	442.0	94.2	16.0	11.0	18.0	
D0-1	[11.02]	[19.69]	[10.04]	[9.25]	[18.70]	[17.40]	[3.71]	[0.63]	[0.43]	[0.71]	
D1*: Flange mounting											

D0-2: VFD450CP43S-21; VFD550CP43S-21

Unit: mm [inch]

Frame	W	Н	D	W1	H1	H2	H3	D1*	D2	S1	S2	Φ1	Ф2	Ф3
0.0	280.0	614.4	255.0	235.0	500.0	475.0	442.0	94.2	16.0	11.0	18.0	62.7	34.0	22.0
D0-2	[11.02]	[24.19]	[10.04]	[9.25]	[19.69]	[18.70]	[17.40]	[3.71]	[0.63]	[0.43]	[0.71]	[2.47]	[1.34]	[0.87]
D1*: Flange mounting														

Frame D

D1:

VFD370CP23A-00; VFD450CP23A-00; VFD750CP43B-00; VFD900CP43A-00; VFD450CP63A-00; VFD550CP63A-00

													Unit: m	n [inch]
Frame	W	Н	D	W1	H1	H2	H3	D1*	D2	S1	S2	Φ1	Φ2	Ф3
D1	330.0 [12.99]	-	275.0 [10.83]	285.0 [11.22]	550.0 [21.65]	525.0 [20.67]	492.0 [19.37]	107.2 [4.22]	16.0 [0.63]	11.0 [0.43]	18.0 [0.71]	-	-	-
												D 4 *		

D1*: Flange mounting

D2:

VFD370CP23A-21; VFD450CP23A-21; VFD750CP43B-21; VFD900CP43A-21; VFD450CP63A-21; VFD550CP63A-21

Unit: mr	m [inch]
÷	φ0

Frame	W	Н	D	W1	H1	H2	H3	D1*	D2	S1	S2	Φ1	Ф2	Ф3
20	330.0	688.3	275.0	285.0	550.0	525.0	492.0	107.2	16.0	11.0	18.0	76.2	34.0	22.0
D2	[12.99]	[27.10]	[10.83]	[11.22]	[21.65]	[20.67]	[19.37]	[4.22]	[0.63]	[0.43]	[0.71]	[3.00]	[1.34]	[0.87]
D1*: Flange mounting													nounting	

Frame E

E1:

VFD550CP23A-00; VFD750CP23A-00; VFD900CP23A-00; VFD1100CP43A-00; VFD1320CP43B-00; VFD750CP63A-00; VFD900CP63A-00; VFD1100CP63A-00; VFD1320CP63A-00

													Unit: m	n [inch]
Frame	W	Н	D	W1	H1	H2	H3	D1*	D2	S1/S2	S3	Φ1	Φ2	Ф3
Γ1	370.0		300.0	335.0	589.0	560.0	528.0	143.0	18.0	13.0	18.0			
	[14.57]	-	[11.81]	[13.19]	[23.19]	[22.05]	[20.80]	[5.63]	[0.71]	[0.51]	[0.71]	-	-	-
												D1*·	Elande n	nounting

D1*: Flange mounting

Frame E

E2:

VFD550CP23A-21; VFD750CP23A-21; VFD900CP23A-21; VFD1100CP43A-21; VFD1320CP43B-21; VFD750CP63A-21; VFD900CP63A-21; VFD1100CP63A-21; VFD1320CP63A-21

													Unit: mr	n [inch]
Frame	W	Н	D	W1	H1	H2	H3	D1*	D2	S1, S2	S3	Φ1	Ф2	Ф3
Γĵ	370.0	715.8	300.0	335.0	589.0	560.0	528.0	143.0	18.0	13.0	18.0	22.0	34.0	92.0
EZ	[14.57]	[28.18]	[11.81]	[13.19	[23.19]	[22.05]	[20.80]	[5.63]	[0.71]	[0.51]	[0.71]	[0.87]	[1.34]	[3.62]
												D1*: F	-lange m	nounting

Frame F

F1:

VFD1600CP43A-00; VFD1850CP43B-00; VFD1600CP63A-00; VFD2000CP63A-00

										Unit: n	nm [inch]
W	Н	D	W1	H1	H2	H3	D1*	D2	S1	S2	S3
420.0		300.0	380.0	800.0	770.0	717.0	124.0	18.0	13.0	25.0	18.0
[16.54]	-	[11.81]	[14.96]	[31.50]	[30.32]	[28.23]	[4.88]	[0.71]	[0.51]	[0.98]	[0.71]
Φ1	Φ2	Ф3									
-	-	-									
	W 420.0 [16.54] Φ1 -	W H 420.0 - [16.54] - Φ1 Φ2 - -	W H D 420.0 300.0 [16.54] - [11.81] Φ1 Φ2 Φ3	W H D W1 420.0 300.0 380.0 [16.54] - [11.81] [14.96] Φ1 Φ2 Φ3 -	W H D W1 H1 420.0 300.0 380.0 800.0 [16.54] - [11.81] [14.96] [31.50] Φ1 Φ2 Φ3 - -	W H D W1 H1 H2 420.0 300.0 380.0 800.0 770.0 [16.54] - [11.81] [14.96] [31.50] [30.32] Φ1 Φ2 Φ3 - - - -	W H D W1 H1 H2 H3 420.0 300.0 380.0 800.0 770.0 717.0 [16.54] - [11.81] [14.96] [31.50] [30.32] [28.23] Φ1 Φ2 Φ3 - - - - -	W H D W1 H1 H2 H3 D1* 420.0 300.0 380.0 800.0 770.0 717.0 124.0 [16.54] [11.81] [14.96] [31.50] [30.32] [28.23] [4.88] Φ1 Φ2 Φ3 - - - - -	W H D W1 H1 H2 H3 D1* D2 420.0 300.0 380.0 800.0 770.0 717.0 124.0 18.0 [16.54] [11.81] [14.96] [31.50] [30.32] [28.23] [4.88] [0.71] Φ1 Φ2 Φ3 - - - - -	W H D W1 H1 H2 H3 D1* D2 S1 420.0 300.0 380.0 800.0 770.0 717.0 124.0 18.0 13.0 [16.54] - [11.81] [14.96] [31.50] [30.32] [28.23] [4.88] [0.71] [0.51] Φ1 Φ2 Φ3 -	W H D W1 H1 H2 H3 D1* D2 S1 S2 420.0 300.0 380.0 800.0 770.0 717.0 124.0 18.0 13.0 25.0 [16.54] - [11.81] [14.96] [31.50] [30.32] [28.23] [4.88] [0.71] [0.51] [0.98] Φ1 Φ2 Φ3 - - - - - - - -

D1*: Flange mounting

Frame F

F2:

VFD1600CP43A-21; VFD1850CP43B-21; VFD1600CP63A-21; VFD2000CP63A-21

											Unit: n	nm [inch]
Frame	W	Н	D	W1	H1	H2	H3	D1*	D2	S1	S2	S3
ГO	420.0	940.0	300.0	380.0	800.0	770.0	717.0	124.0	18.0	13.0	25.0	18.0
F2	[16.54]	[37.00]	[11.81]	[14.96]	[31.50]	[30.32]	[28.23]	[4.88]	[0.71]	[0.51]	[0.98]	[0.71]
Frame	Φ1	Ф2	Ф3									
ED	92.0	35.0	22.0									
ΓZ	[3.62]	[1.38]	[0.87]									

D1*: Flange mounting

Frame G

G1:

VFD2200CP43A-00; VFD2800CP43A-00; VFD2500CP63A-00; VFD3150CP63A-00

												Unit: m	m [inch]
Frame	W	Н	D	W1	H1	H2	H3	S1	S2	S3	Φ1	Φ2	Ф3
G1	500.0 [19.69]	-	397.0 [15.63]	440.0 [217.32]	1000.0 [39.37]	963.0 [37.91]	913.6 [35.97]	13.0 [0.51]	26.5 [1.04]	27.0 [1.06]	-	-	-

Frame G

G2:

VFD2200CP43A-21; VFD2800CP43A-21; VFD2500CP63A-21; VFD3150CP63A-21

												Unit: m	m [inch]
Frame	W	Н	D	W1	H1	H2	H3	S1	S2	S3	Φ1	Φ2	Ф3
<u></u>	500.0	1240.2	397.0	440.0	1000.0	963.0	913.6	13.0	26.5	27.0	22.0	34.0	117.5
GZ	[19 69]	[48 83]	[15 63]	[217 32]	[39 37]	[37 91]	[35 97]	[0.51]	[1 04]	[1 06]	[0 87]	[1,34]	[4 63]

Frame H

H1:

VFD3150CP43A-00; VFD3550CP43A-00; VFD4000CP43A-00; VFD5000CP43A-00

Frame H

H2:

VFD3150CP43C-00; VFD3550CP43C-00; VFD4000CP43C-00; VFD5000CP43C-00

												•	
Frame	W	Н	D	W1	W2	W3	W4	W5	W6	H1	H2	H3	H4
⊔າ	700.0	1745.0	404.0	630.0	500.0	630.0	760.0	800.0		1729.0	1701.6		
ΠΖ	[27.56]	[68.70]	[15.90]	[24.8]	[19.69]-	[24.80]	[29.92]	[31.5]	-	[68.07]	[66.99]	-	-
Frame	H5	D1	D2	D3	D4	D5	D6	S1	S2	S3	Φ1	Ф2	Ф3
⊔ว		51.0	38.0	65.0	204.0	68.0	137.0	13.0	26.5	25.0			
112	-	[2.00]	[1.50]	[2.56]	[8.03]	[2.68]	[5.40]	[0.51]	[1.04]	[0.98]	-	-	-

80

D5

ø3

Frame H

H3:

VFD3150CP43C-21; VFD3550CP43C-21; VFD4000CP43C-21; VFD5000CP43C-21

Detail A Detail B (Mounting Hole) (Mounting Hole)

												Unit : m	ım [inch
Frame	W	Н	D	W1	W2	W3	W4	W5	W6	H1	H2	H3	H4
ЦЗ	700.0	1745.0	404.0	630.0	500.0	630.0	760.0	800.0		1729.0	1701.6		
пэ	[27.56]	[68.70]	[15.91]	[24.80]	[19.69]	[24.80]	[29.92]	[31.5]	-	[68.07]	[66.99]	-	-
Frame	H5	D1	D2	D3	D4	D5	D6	S1	S2	S3	Φ1	Ф2	Ф3
Цр		51.0	38.0	65.0	204.0	68.0	137.0	13.0	26.5	25.0	22.0	34.0	117.5
пэ	-	[2.00]	[1.50]	[2.56]	[8.03]	[2.68]	[5.40]	[0.51]	[1.04]	[0.98]	[0.87]	[1.34]	[4.63]

D2

W2

W3 W4 690V

Frame H

H1:

VFD4000CP63A-00; VFD4500CP63A-00; VFD5600CP63A-00; VFD6300CP63A-00

Frame	W	W1	W2	Н	H1	H2	H3	D	D1	S1	S2	S3	S4
LI1	700.0	630.0	290.0	1435.0	1389.0	1346.4	1376.0	404.0	51.0	26.5	13.0	14.0	25.0
	[27.56]	[24.80]	[11.42]	[56.50]	[54.68]	[53.01]	[54.17]	[15.91]	[2.01]	[1.04]	[0.51]	[0.55]	[0.98]

690V

Frame H

H2:

VFD4000CP63A-21; VFD4500CP63A-21; VFD5600CP63A-21; VFD6300CP63A-21

												Unit: m	m [inch]
Frame	W	W1	W2	W3	W4	W5	Н	H1	H2	H3	D	D1	D2
ЦЭ	700.0	630.0	800.0	500.0	630.0	760.0	1745.0	1715.0	42.5	109.0	404.0	51.0	68.0
112	[27.56]	[24.80]	[31.50]	[19.69]	[24.80]	[29.92]	[68.70]	[67.52]	[1.67]	[4.29]	[15.91]	[2.01]	[2.68]
Frame	D3	D4	D5	S1	S2	S3	S4	S5					
ЦЭ	137.0	103.0	204.0	26.5	13.0	14.0	25.0	13.0					
пΖ	[5.39]	[4.06]	[8.03]	[1.04]	[0.51]	[0.55]	[0.98]	[0.51]					

Digital Keypad KPC-CC01

[This page intentionally left blank]

Chapter 2 Installation

Mounting Clearance

- ☑ Prevent fiber particles, scraps of paper, shredded wood saw dust, metal particles, etc. from adhering to the heat sink.
- ☑ Install the AC motor drive in a metal cabinet. When installing one drive below another one, use a metal separation between the AC motor drives to prevent mutual heating and to prevent the risk of fire accident.
- ☑ Install the AC motor drive in Pollution Degree 2 environments only: normally only nonconductive pollution occurs and temporary conductivity caused by condensation is expected.

The appearances shown in the following figures are for reference only.

Chapter 2 Installation | CP2000

Minimum mounting clearance

Frame	A [mm]	B [mm]	C [mm]	D [mm]
A~C	60	30	10	0
D0~F	100	50	-	0
G	200	100	-	0
Н	350	0	0	200 (100, Ta=Ta*=50℃)

The minimum mounting clearances A~D stated in the table above applies to AC motor drives installation. Failing to follow the minimum mounting clearances may cause the fan to malfunction and heat dissipation problems.

Table 2-1

	· · · · · · · · · · · · · · · · · · ·
Frame A	VFD007CP23A-21; VFD007CP43A/4EA-21; VFD015CP23A-21; VFD015CP43B/4EB-21; VFD022CP23A-21; VFD022CP43B/4EB-21; VFD037CP23A-21; VFD037CP43B/4EB-21; VFD040CP43A/4EA-21; VFD055CP23A-21; VFD055CP43B/4EB-21; VFD075CP43B/4EB-21; VFD015CP53A-21; VFD022CP53A-21; VFD037CP53A-21
Frame B	VFD075CP23A-21; VFD110CP23A-21; VFD110CP43B/4EB -21; VFD150CP23A-21; VFD150CP43B/4EB -21; VFD185CP43B/4EB -21; VFD055CP53A-21; VFD075CP53A-21; VFD110CP53A-21; VFD150CP53A-21
Frame C	VFD185CP23A-21; VFD220CP23A-21; VFD220CP43A/4EA -21; VFD300CP23A-21; VFD300CP43B/4EB -21; VFD370CP43B/4EB -21; VFD185CP63A-21; VFD220CP63A-21; VFD300CP63A-21; VFD370CP63A-21
Frame D0	VFD450CP43S-00; VFD550CP43S-00; VFD450CP43S-21; VFD550CP43S-21
Frame D	VFD370CP23A-00/23A-21; VFD450CP23A-00/23A-21; VFD750CP43B-00/43B-21; VFD900CP43A-00/43A-21; VFD450CP63A-00/63A-21; VFD550CP63A-00/63A-21
Frame E	VFD550CP23A-00/23A-21; VFD750CP23A-00/23A-21; VFD900CP23A-00/23A-21; VFD1100CP43A-00/43A-21; VFD1320CP43B-00/43B-21; VFD750CP63A-00/63A-21; VFD900CP63A-00/63A-21; VFD1100CP63A-00/63A-21; VFD1320CP63A-00/63A-21
Frame F	VFD1600CP43A-00/43A-21; VFD1850CP43B-00/43B-21; VFD1600CP63A-00/63A-21; VFD2000CP63A-00/63A-21
Frame G	VFD2200CP43A-00/43A-21; VFD2800CP43A-00/43A-21; VFD2500CP63A-00/63A-21; VFD3150CP63A-00/63A-21
Frame H	VFD3150CP43A-00/43C-00/43C-21; VFD3550CP43A-00/43C-00/43C-21; VFD4000CP43A-00/43C-00/43C-21; VFD5000CP43A-00/43C-00/43C-21; VFD4000CP63A-00/63A-21; VFD4500CP63A-00/63A-21; VFD5600CP63A-00/63A-21; VFD6300CP63A-00/63A-21

Table 2-2

ΝΟΤΕ

- ** The mounting clearances stated in the figure are for installing the drive in an open area. To install the drive in a confined space (such as cabinet or electric box), please follow the following three rules: (1) Keep the minimum mounting clearances. (2) Install a ventilation equipment or an air conditioner to keep surrounding temperature lower than operation temperature. (3) Refer to parameter setting and set up Pr. 00-16, Pr.00-17, and Pr. 06-55.
- The following table shows the heat dissipation and the required air volume when installing a single drive in a confined space. When installing multiple drives, the required air volume shall be multiplied by the number the drives.
- Refer to the chart (Air flow rate for cooling) for ventilation equipment design and selection.
- Refer to the chart (Power dissipation) for air conditioner design and selection.
- * Different control mode will affect the derating. See Pr06-55 for more information.
- * Ambient temperature derating curve shows the derating status in different temperature in relation to different protection level.
- If UL Type 1 models need side by side installation, please remove top cover of Frame A~C, and please do not install conduit box of Frame D and above.
- Suitable for Installation in a Compartment Handling Conditioned Air (Plenum).

	Power Dissipation								
	Flow Rate [cfm]			Flow Rate [m ³ /hr]			Power Dissipation [watt]		
Model No.	External	Internal	Total	External	Internal	Total	Loss External (Heat Sink)	Internal	Total
VFD007CP23A-21	-	-	-	-	-	-	40	31	71
VFD015CP23A-21	-	-	-	-	-	-	61	39	100
VFD022CP23A-21	14	-	14	24	-	24	81	45	126
VFD037CP23A-21	14	-	14	24	-	24	127	57	184
VFD055CP23A-21	10	-	10	17	-	17	158	93	251
VFD075CP23A-21	40	14	54	68	24	92	291	101	392
VFD110CP23A-21	66	14	80	112	24	136	403	162	565

Chapter 2 Installation | CP2000

Air flow rate for cooling							Power Dissipation		
	Flo	w Rate [c	fm] Flow Rate [m ³ /hr			³ /hr]	Power Dissipation [watt]		att]
Model No.	External	Internal	Total	External	Internal	Total	Loss External (Heat Sink)	Internal	Total
VFD150CP23A-21	58	14	73	99	24	124	570	157	727
VFD185CP23A-21	166	12	178	282	20	302	622	218	840
VFD220CP23A-21	166	12	178	282	20	302	777	197	974
VFD300CP23A-21	146	12	158	248	20	268	878	222	1100
VED370CP23A-00/							0.0		
VFD370CP23A-21	179	30	209	304	51	355	1271	311	1582
VFD450CP23A-00/ VFD450CP23A-21	179	30	209	304	51	355	1550	335	1885
VFD550CP23A-00/ VFD550CP23A-21	228	73	301	387	124	511	1762	489	2251
VFD750CP23A-00/ VFD750CP23A-21	228	73	301	387	124	511	2020	574	2594
VFD900CP23A-00/ VFD900CP23A-21	246	73	319	418	124	542	2442	584	3026
VFD007CP43A/ VFD007CP4EA-21	-	-	-	-	-	-	35	32	67
VFD015CP43B/ VFD015CP4EB-21	-	-	-	-	-	-	48	39	87
VFD022CP43B/ VFD022CP4EB-21	-	-	-	-	-	-	64	52	116
VFD037CP43B/ VFD037CP4EB-21	14	-	14	24	-	24	103	77	180
VFD040CP43A/ VFD040CP4EA-21	10	-	10	17	-	17	124	81	205
VFD055CP43B/ VFD055CP4EB-21	10	-	10	17	-	17	142	116	258
VFD075CP43B/ VFD075CP4EB-21	10	-	10	17	-	17	205	129	334
VFD110CP43B/ VFD110CP4EB-21	40	14	54	68	24	92	291	175	466
VFD150CP43B/ VFD150CP4EB-21	66	14	80	112	24	136	376	190	566
VFD185CP43B/ VFD185CP4EB-21	58	14	73	99	24	124	396	210	606
VFD220CP43A/ VFD220CP4EA-21	99	21	120	168	36	204	455	358	813
VFD300CP43B/ VFD300CP4EB-21	99	21	120	168	36	204	586	410	996
VFD370CP43B/ VFD370CP4EB-21	126	21	147	214	36	250	778	422	1200
VFD450CP43S-00/ VFD450CP43S-21	179	30	209	304	51	355	1056	459	1515
VFD550CP43S-00/ VFD550CP43S-21	179	30	209	304	51	355	1163	669	1832
VFD750CP43B-00/ VFD750CP43B-21	179	30	209	304	51	355	1407	712	2119
VFD900CP43A-00/ VFD900CP43A-21	186	30	216	316	51	367	1787	955	2742
VFD1100CP43A-00/ VFD1100CP43A-21	257	73	330	437	124	561	2112	1084	3196
VFD1320CP43B-00/ VFD1320CP43B-21	223	73	296	379	124	503	2597	1220	3817
VFD1600CP43A-00/ VFD1600CP43A-21	224	112	336	381	190	571	3269	1235	4504
VFD1850CP43B-00/ VFD1850CP43B-21	289	112	401	491	190	681	3814	1570	5384
VFD2200CP43A-00/ VFD2200CP43A-21			454			771			6358

Chapter 2 Installation | CP2000

Air flow rate for cooling							Pow	er Dissipatio	n
	im] Flow Rate [m ³ /hr]				Power Dissipation [watt]				
Model No.	External	Internal	Total	External	Internal	Total	Loss Externa (Heat Sink)	I Internal	Total
VFD2800CP43A-00/ VFD2800CP 43A-21			454			771		·	7325
VFD3150CP43A-00/ VFD3150CP43C-00/			769			1307			8513
VFD3150CP43C-21 VFD3550CP43A-00/			760			1207			0440
VFD3550CP43C-00/ VFD3550CP43C-21 VED4000CP43A-00/			709			1307			9440
VFD4000CP43C-00/ VFD4000CP43C-21			769			1307			10642
VFD5000CP43A-00/ VFD5000CP43C-00/			769			1307			13364
				1			00.5	40.0	50
VFD015CP53A-21	-	-	-	-	-	-	39.5	13.0	53
VED022CF53A-21	- 0.006	-	- 0.006	- 13.6	-	- 13.6	35.0 86.8	22.0	130
VED055CP53A-21	0.000	-	0.000	40.0	- 14.5	54.5	124.6	67.9	103
VED075CP53A-21	0.013	0.007	0.020	40.0	14.5	54.5	143.5	119.0	263
VED110CP53A-21	0.013	0.007	0.020	40.0	14.5	54.5	222.2	162.8	385
VED150CP53A-21	0.010	0.007	0.020	40.0	14.5	54.5	308.5	216.5	525
VED185CP63A-21	90.0	21.3	111 4	153.0	36.2	189.2	317.5	145.0	462.5
VED220CP63A-21	90.0	21.3	111.4	153.0	36.2	189.2	408.2	141.8	550.0
VED300CP63A-21	90.0	21.3	111.4	153.0	36.2	189.2	400.2	257.3	750.0
VED370CP63A-21	80.0	21.3	110.3	151.0	36.2	187.5	6/1.6	283.4	925.0
	175.0	36.4	212.3	208.8	61.8	360.6	718.2	406.8	1125.0
VFD550CP63A-00/21	175.9	36.4	212.3	208.8	61.8	360.6	890.1	400.0	1375.0
VED750CP63A-00/21	264.6	90.6	355.2	449.6	153.9	603.5	1356.0	519.0	1875.0
VED900CP63A-00/21	264.6	90.6	355.2	449.6	153.0	603.5	1652.8	597.2	2250.0
VFD1100CP63A_00/21	264.6	90.0	355.2	443.0	153.0	603.5	1060.3	789.7	2750.0
VED1320CP63A-00/21	264.6	90.0	355.2	443.0	153.0	603.5	2230.8	1060.2	3300.0
VFD1600CP63A-00/21	2/18 1	135.3	383 /	421.6	220.0	651 /	2627.3	1372.7	4000.0
VED2000CP63A-00/21	240.1	135.3	383 /	421.0	223.3	651.4	3/15.0	1585.0	5000.0
VED2500CP63A-00/21	240.1	100.0	409.7	421.0	220.0	696.0	4751 7	1498.3	6250.0
VED3150CP63A-00/21			400.7	-		696.0	5695.4	2179.6	7875.0
VED4000CP63A-00/21			563.0			956.4	6796.2	3203.8	10000.0
VFD4500CP63A-00/21			952.9			1618.9	7313.6	3936.4	11250.0
VED5600CP63A-00/21			952.9			1618.9	9553.4	4446.6	14000.0
VED6300CP63A-00/21			952.9	-		1618.9	11042.4	4707.6	15750.0
* The required airflo	w shown	in chart	is for in	stalling si	inale driv	e in a	* The heat	dissination s	shown in
confined space		in ondit		olaining o	ingle and	o in a	the chart	is for installin	na sinale
When installing the	e multiple	drives. t	he reauir	ed air vol	lume sho	uld be	drive in a	confined spa	ce.
the required air volu	ume for s	ingle driv	e X the n	umber of	the drive	S.	* When ins	stalling the	multiple
		0					drives,	volume o	f heat
							dissipation	n should be	the heat
							dissipated	for single	drive X
							the number	er of the drive	es.
							% Heat dis	sipation fo	r each
							model is	calculated l	by rated
							voltage,	current and	default
							carrier.		

[The page intentionally left blank]

Chapter 3 Unpacking

- 3-1 Unpacking
- 3-2 The Lifting Hook

Chapter 3 Unpacking | CP2000

The AC motor drive should be kept in the shipping carton or crate before installation. In order to retain the warranty coverage, the AC motor drive should be stored properly when it is not to be used for an extended period of time.

3-1 Unpacking

The AC motor drive is packed in the crate. Follows the following step for unpack:

Chapter 3 Unpacking | CP2000

Frame H

Crate 03 (VFDXXXXCPXXC-21)

Use flat-head screwdriver to remove the clips on the side of the crate, 8 clips in total.

Chapter 3 Unpacking | CP2000

Frame H: Secure the drive

H1: VFDXXXXCPXXA-00

Screw: M12*6 Torque: 340-420kg-cm / [295.1-364.6lb-in.] / [33.3~41.2 Nm]

H2: VFDXXXXCPXXC-00

Secure the drive from internal.

Screw: M12*8 Torque: 340-420kg-cm / [295.1-364.6lb-in.] / [33.3~41.2 Nm]

H3: VFDXXXXCPXXC-21

Secure the drive from the external. Screw: M12*8 Torque: 340-420kg-cm / [295.1-364.6lb-in.] / [33.3~41.2 Nm]

3-2 The Lifting Hook

The arrows indicate the lifting holes, as in figure below: (Frame $D0 \sim H$).

Weight of models

H1 235kg [518.1lbs]	VFD3150CP43A-00; VFD3550CP43A-00; VFD4000CP43A-00; VFD5000CP43A-00; VFD4000CP63A-00; VFD4500CP63A-00; VFD5600CP63A-00; VFD6300CP63A-00
H2 257kg [566.6lbs]	VFD3150CP43C-00; VFD3550CP43C-00; VFD4000CP43C-00; VFD5000CP43A-00; VFD4000CP63A-21; VFD4500CP63A-21; VFD5600CP63A-21; VFD6300CP63A-21
H3 257kg [566.6lbs]	VFD3150CP43C-21; VFD3550CP43C-21; VFD4000CP43C-21; VFD5000CP43C-21

[The page intentionally left blank]

Chapter 4 Wiring

- 4-1 System Wiring Diagram
- 4-2 Wiring

After removing the front cover, please check if the power and control terminals are clearly noted. Please read following precautions to avoid wiring mistakes.

DANGER	N N N	It is crucial to cut off the AC motor drive power before any wiring. A charge may still remain in the DC-BUS capacitors with hazardous voltages even if the power has been turned off only after a short time. Therefore it is suggested measure the remaining voltage by DC voltage meter before wiring. For your personnel safety, please do not start wiring before the voltage drops to a safe level < 25 VDC. Wiring installation with remaining voltage condition may cause sparks and short circuit. Only qualified personnel familiar with AC motor drives is allowed to perform installation, wiring and commissioning. Make sure the power is turned off before wiring to prevent electric shock. The main circuit terminals R/L1, S/L2, T/L3 are for power input. If the power is wrongly connected to others terminals, it may result in damage to the equipment. The voltage and current should lie within the range as indicated on the nameplate (Chapter 1-1). All the units must be grounded directly to a common ground terminal to prevent lightning strike or electric shock.
		sparks due to the loosening of vibrations.
CAUTION	N	 When wiring, please choose the wires with specification that complies with local regulation for your personnel safety. Check following items after finishing the wiring: 1. Are all connections correct? 2. Any loosen wires? 3. Any short-circuits between the terminals or to ground?

4-1 System Wiring Diagram

Power input terminal		
	Power input terminal	Please refer to Chapter 9 Specification Table in user manual for detail
NFB or fuse	NFB or fuse	There may be a large inrush current during power on. Refer to 7-2 NFB to select a suitable NFB or 7-3 Fuse Specification Chart.
Electromagnetic	Electromagnetic contactor	Switching the power ON/OFF before the magnetic contactor more than 1xper hour can cause damage to the drive.
AC reactor (input terminal)	AC reactor	When the mains power capacity is > 500kVA or when the drive is preceded by a capacitor bank, instantaneous peaks voltages and current
EMC filter	(input terminal)	may destroy the drive. In that case it is recommended to install an AC input reactor which will also improve the power factor and harmonics. The cable between reactor and drive should be < 10m. Please refer to Chapter 7-4.
R/L1 S/L2 T/L3 E + B1 HB B2 B2 B2 B2 B1 HB	Zero-phase reactor	Used to reduce radiated emission, especially in environments with audio devices, and reduce input and output side interference. The effective range is AM band to 10MHz. Please refer to Chapter 7-5.
U/T1 V/T2 W/T3 ⊜EQ [™] [№] ⁸ / ₂	EMC filter	Can be used to reduce electromagnetic interference. Please refer to Chapter 7-6.
Zero-phase reactor	Brake module & Brake resistor(BR)	Used to shorten the deceleration time of the motor. Please refer to Chapter 7-1.
AC reactor (output terminal)	AC reactor (output terminal)	The motor cable length will affect switching current peaks. It is recommended to install an AC output reactor when the motor cable length exceeds the value in Chapter 7-4.

4-2 Wiring

*1 Please refer to Chapter 4-2-2 (Page 4-8) for DC link wiring

*2 Please refer to Chapter 7-1 for brake units and resistors selection

Wiring Diagram for Frame G~H

*1 Please refer to Chapter 4-2-2 (Page 4-8) for DC link wiring

*2 Please refer to Chapter 7-1 for brake units and resistors selection

Note: When wiring for 12 Pulse Input, please strictly follow above wiring diagram, or it may cause the fan stop unexpectedly. Any questions, please contact Delta Electronics, Inc.

Wiring Diagram for Frame A~H

Input: 3-phase power

4-2-1 SINK(NPN)/SOURCE(PNP) Mode

Chapter 4 Wiring | CP2000

4-2-2 Function of DC Link

- ☑ Applicable to Frame E~H
- ☑ Operation Instruction
 - 4-2-2-1 Common DC power and common DC-BUS link (refer to Chart 1)

The terminal R and S (refer to Figure 4-1) are not required to remove when linking common DC power and common DC-BUS

4-2-2-2 Common DC-BUS link (refer to Figure 4-2)

- When RST power is off, please disconnect terminal r and terminal s. (As circled in Chart 3, disconnecting the gray section and properly store the cable of r and s. Cable of r and s are not available in optional accessories, please reserve it carefully.)
- After removing the cable of terminal r and terminal s, the power source can be connected to terminal r and terminal s. Please connect 220VAC for 230V model and 440VAC for 460V model.
- When the drive power is on, if terminal r and terminal s are not connected to the power source (220VAC for 230V model and 440VAC for 460 V model), the digital keypad will display an error message "ryF"

Figure 4-2

Common DC-BUS can only be applied to the drives with same power range. If in your case the drive is in different power range, please contact us (Delta Industrial Automation Business Group).

[This page intentionally left bank.]

Chapter 5 Main Circuit Terminals

- 5-1 Main Circuit Diagram
- 5-2 Specifications of Main Circuit Terminals

Δ	☑ Fasten the screws in the main circuit terminal to prevent sparks condition made by the
14	loose screws due to vibration.
	☑ When it needs to install the filter at the output side of terminals U/T1, V/T2, W/T3 on
DANGER	the AC motor drive, please use inductance filter. Do not use phase-compensation
	capacitors or L-C (Inductance-Capacitance) or R-C (Resistance-Capacitance), unless
	approved by Delta.
	☑ DO NOT connect phase-compensation capacitors or surge absorbers at the output
	terminals of AC motor drives.
	☑ DO NOT connect [+1, -], [+2, -], [+1/DC+, -/DC-] or brake resistor directly to prevent
	drive damage.
	☑ Ensure the insulation of the main circuit wiring in accordance with the relevant safety
	regulations.
	Main power terminals
	☑ Do not connect 3-phase model to one-phase power. R/L1, S/L2 and T/L3 has no
	phase-sequence requirement, it can be used upon random selection.
CAUTION	☑ It is recommend adding a magnetic contactor (MC) to the power input wiring to cut off
	power quickly and reduce malfunction when activating the protection function of the
	AC motor drive. Both ends of the MC should have an R-C surge absorber.
	☑ Please use voltage and current within the specification.
	☑ When using a general GFCI (Ground Fault Circuit Interrupter), select a current sensor
	with sensitivity of 200mA or above and not less than 0.1-second operation time to
	avoid nuisance tripping.
	\blacksquare Please use the shield wire or tube for the power wiring and ground the two ends of the
	shield wire or tube.
	☑ Do NOT run/stop AC motor drives by turning the power ON/OFF. Run/stop AC motor
	drives by RUN/STOP command via control terminals or keypad. If you still need to
	run/stop AC motor drives by turning power ON/OFF, it is recommended to do so only
	ONCE per hour.
	☑ Connect the drive to a 3-phase three-wire or 3-phase four-wire Wye system to comply
	with UL standards.
	Output terminals for main circuit
	☑ Use well-insulated motor, suitable for inverter operation.
	\blacksquare When the AC drive output terminals U/T1, V/T2, and W/T3 are connected to the motor
	terminals U/T1, V/T2, and W/T3, respectively, the motor will rotate counterclockwise
	(as viewed on the shaft end of the motor) when a forward operation command is
	received. To permanently reverse the direction of motor rotation, switch over any of
	the two motor leads
	Foward
	Running

5-1 Main Circuit Diagram

For frame D0 and above D0 *Provide 3-phase inputpower

*1 Please refer to Chapter 4-2-2 (Page 4-8, 4-9) for DC link wiring

*2 Please refer to Chapter 7-1 for brake units and resistors selection

Wiring Diagram for Frame G~H Input: 6-phase power

*1 Please refer to Chapter 4-2-2 (Page 4-8) for DC link wiring

*2 Please refer to Chapter 7-1 for brake units and resistors selection

Note: When wiring for 12 Pulse Input, please strictly follow above wiring diagram, or it may cause the fan stop unexpectedly. Any questions, please contact Delta Electronics, Inc.

- If the wiring between motor drive and motor is over 75 meters, please refer to Chapter 7-4 Specifications of limits for motor cable length.
- Please remove short circuit plate of Frame G and H if 12 pulse is implemented, before implementing 12 pulse, consult Delta for more detail.

Terminals	Descriptions					
R/L1, S/L2, T/L3	AC line input terminals 3-phase					
U/T1, V/T2, W/T3	AC drive output terminals for connecting 3-phase induction motor					
	Applicable to frame A~C					
+1, +2	Connections for DC reactor to improve the power factor. It needs to remove the					
	jumper for installation.					
	Connections for brake unit (VFDB series)					
	(for 230V models: \leq 22kW, built-in brake unit)					
+1/DC+, -/DC-	(for 460V models: \leq 30kW, built-in brake unit)					
	(for 690V models: \leq 37kW, built-in brake unit)					
	Common DC Bus					
B1, B2	Connections for brake resistor (optional)					
	Earth connection, please comply with local regulations.					

5-2 Specifications of Main Circuit Terminals

- Figure 1 shows the terminal specification. The terminal is required for wiring of main circuit terminals.
- Figure 2 shows the specification of insulated heat shrink tubing that comply with UL (600V, YDPU2).

Figure 2.

Terminal specification

Frame	AWG	Kit P/N	A (MAX)	B (MAX)	C (MIN)	D (MAX)	d2 (MIN)	E (MIN)	F (MIN)	W (MAX)	t (MAX)
	16	RNBL2-4									
•	14		00	-		0	4.0	0		10	4 5
A	12	RNBL5-4	20	5	5.5	9	4.3	8	5.5	10	1.5
	10	RNBS8-/									
	8	RNBM8-5									
в	6	RNB14-5	28.0	7.0	75	14 0	52	13.0	12.0	14 0	1.5
	4	RNBS22-5	20.0	1.0	1.0	11.0	0.2	10.0	12.0	11.0	
	6	RNB14-8									
_	4 RNB22-8										
C 2	RNBS38-8	40	12	12.5	22	8.3	13	12.5	24	2.5	
	1/0	RNB60-8									
	4	RNB22-8	44.0	40.0	40.0	45.0	0.0	40.0	47.0	00.0	0.0
D0	2	RNBS38-8	44.0	13.0	10.0	15.0	8.3	13.0	17.0	26.0	3.0
DU	1/0	SQNBS60-8	40.0	11.0	10.0	22.0	0.0	12.0	14.0*	24.0	1 E
	2/0	SQNBS80-8	40.0	11.0	10.0	23.0	0.3	13.0	14.0	24.0	4.5
	4	RNB22-8									
	2	RNBS38-8									
1/0	RNB60-8										
	2/0	RNB70-8	50.0	16.0	10.0	27.0	0.2	12.0	14.0	28.0	6.0
D	3/0	RNB80-8	50.0	10.0	10.0	27.0	0.3	10.0	14.0		
	4/0	SQNBS100-8									
	250MCM	SQNBS150-8									
	300MCM	SQNBS150-8									
	4/0	RNB100-8			17.0	26.5	8.4	13.0	17.0	21.0	5.0
-	3/0	RNB80-8	52 0	16.0							
	2/0	RNB70-8	55.0	10.0	17.0	20.5				51.0	
	1/0	RNB60-8									
	3/0	RNB80-8									
F	4/0	SQNBS100-8	55.0	15.0	10.0	27.0	8.3	13.0	17.5	31.0	6.0
	300MCM	SQNBS150-8									
	2/0	SONBS80-8									
	3/0		54	15.5	18	26.5	8.2	13	18	31	3.5
G	4/0	SQNBS100-8	•			_0.0	0.2			•	0.0
	250MCM	SQNBS150-8									
	400MCM 500MCM	SQNBS200-12	70	21	27	32.7	12.2	13	27	42	4.0
	3/0	SQNBS80-8									
	4/0	SQNBS100-8	Į								
H 250MCM		54	15.5	18	26.5	8.2	13	18	31	3.5	
	300MCM	SQNBS150-8			_						
	350MCM										

*F(MAX.)=16.5

Unit: mm

Chapter 5 Main Circuit Terminals | CP2000

Frame A

- If you install at Ta 50°C environment, please select copper wire with voltage rating 600V and temperature resistant at 75°C or 90°C.
- If you install at Ta 50°C above environment, please select copper wire with voltage rating 600V and temperature resistant at 90°C or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistant at 75°C which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wire.

	R/L1 · S/L2	Main Circuit Termina , T/L3 , U/T1 , V/T2	als 2,W/T3,B1,	Terminal 🕀			
Model Name	B2,	· -/DC- · +2/DC+ · +	-1/DC+				
	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)	
VFD007CP23A-21		2.5mm ² [14AWG]		2.5mm ² [14AWG]	2.5mm ² [14AWG]		
VFD015CP23A-21		4.0mm ² [12AWG]		4.0mm ² [12AWG]	4.0mm ² [12AWG]		
VFD022CP23A-21		6.0mm ² [10AWG]		6.0mm ² [10AWG]	6.0mm ² [10AWG]		
VFD037CP23A-21		10.0mm ² [8AW/G]		10.0mm ²	10.0mm ²		
VFD055CP23A-21				[8AWG]	[8AWG]		
VFD007CP43A-21		1.5mm^2 [16A\MC]	M4	2.5mm ²	2.5mm ²		
VFD015CP43A-21	_			[144\WG]	[144WG]	M4	
VFD022CP43A-21	10mm ²	2.5mm ² [14AWG]	20kg-cm		[14,4110]	20kg-cm	
VFD037CP43A-21	[8 AWG]	6.0mm ² [10AWG]	[17.4lb-in.]	6.0mm ²	6.0mm ²	[17.4lb-in.]	
VFD040CP43A-21	_		[1.96Nm]	[10AWG]	[10AWG]	[1.96Nm]	
VFD055CP43A-21	_	10.0mm ² [8AW/G]		10.0mm ²	10.0mm ²		
VFD075CP43A-21	_			[8AWG]	[8AWG]	-	
VFD007CP43EA-21	_	1 5mm ² [16ΔW/G]		2 5mm ²	2 5mm ²		
VFD015CP43EA-21	-			[14AWG]	[14AWG]		
VFD022CP43EA-21	-	2.5mm ² [14AWG]		[14, (110]	[147,010]	-	
VFD037CP43EA-21		6.0mm ² [10AWG]		6.0mm ²	6.0mm ²		
VFD040CP43EA-21				[10AWG]	[10AWG]		
VFD055CP43EA-21		10.0mm ² [8A\V/G1		10.0mm ²	10.0mm ²		
VFD075CP43EA-21				[8AWG]	[8AWG]		

- If you install at Ta 40°C environment, please select copper wire with voltage rating 600V and temperature resistant at 75°C or 90°C.
- If you install at Ta 40°C above environment, please select copper wire with voltage rating 600V and temperature resistant at 90°C or above.
- For VFD150CP23A-21, if you install at Ta 30°C above environment, please select copper wire with voltage rating 600V and temperature resistant at 90°C or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistant at 75°C which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wire.

Model Name	R/L1 [,] S/L2 B2 [,]	Main Circuit Termin ,T/L3,U/T1,V/T2 ,-/DC-,+2/DC+,+	als 2,W/T3,B1, -1/DC+	Terminal 🕀			
Wodel Name	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)	
VFD075CP23A-21		10mm ² [8AWG]		10mm ² [8AWG]	10mm ² [8AWG]		
VFD110CP23A-21		25mm ² [4AWG]		25mm ²	16mm ²	-	
VFD150CP23A-21]		M5	[4AWG	[6AWG]		
VFD110CP43B-21		10.0mm ² [9.4\4/C]		10.0mm ²	10.0mm ²	M5	
VFD150CP43B-21	25mm ²		35kg-cm	[8AWG]	[8AWG]	35kg-cm	
VFD185CP43B-21	[4AWG]	16mm ² [6AWG]	[30.4lb-in.] [3.43Nm]	16mm² [6AWG]	16mm ² [6AWG]	[30.4lb-in.] [3.43Nm]	
VFD110CP4EB-21]	10.0mm ² [9.0\0/C]		10.0mm ²	10.0mm ²		
VFD150CP4EB-21				[8AWG]	[8AWG]		
VFD185CP4EB-21		16mm ² [6AWG]		16mm² [6AWG]	16mm ² [6AWG]		

• Wire fix to pole "DC+" with 45kg-cm / [39.0lb-in] / [4.42Nm]

Chapter 5 Main Circuit Terminals | CP2000

Frame C

- If you install at Ta 40°C environment, please select copper wire with voltage rating 600V and temperature resistant at 75°C or 90°C.
- If you install at Ta 40°C above environment, please select copper wire with voltage rating 600V and temperature resistant at 90°C or above.
- For VFD300CP23A-21, if you install at Ta 30°C above environment, please select copper wire with voltage rating 600V and temperature resistant at 90°C or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistant at 75°C which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wire.
- Wire fix to pole "DC+" with 90kg-cm / [78.2lb-in] / [8.83Nm]

Model Name	R/L1 [,] S/L2 B2 [,]	Main Circuit Termin ,T/L3,U/T1,V/T2 ,/DC-,+2/DC+,+	als 2,W/T3,B1, -1/DC+	Terminal 🕀			
Model Name	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)	
VFD185CP23A-21 VFD220CP23A-21 VFD300CP23A-21		50mm ² [1AWG]		50mm² [1AWG]	25mm² [4AWG]		
VFD220CP43A-21		25mm ² [4AWG]		25mm ² [4AWG]		M8	
VFD300CP43B-21	50mm ²	35mm ² [3AWG]	M8 80kg.om	35mm ² [3AWG]			
VFD370CP43B-21	[1/0AWG]	35mm ² [2AWG]	[69.4lb-in.]	35mm ² [2AWG]	16mm ²	[69.4lb-in.]	
VFD220CP4EA-21		25mm ² [4AWG]	[7.041111]	25mm ² [4AWG]	[6AWG]		
VFD300CP4EB-21		35mm ² [3AWG]		35mm ² [3AWG]	-		
VFD370CP4EB-21		35mm ² [2AWG]		35mm ² [2AWG]			

Frame D0

- If you install at Ta 40°C environment, please select copper wire with voltage rating 600V and temperature resistant at 75°C or 90°C.
- If you install at Ta 40°C above environment, please select copper wire with voltage rating 600V and temperature resistant at 90°C or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistant at 75°C which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wire.

Model Name	R/L1 [,] S/L2	Main Circuit Termin , T/L3 , U/T1 , V/T2 +1/DC+	als 2,W/T3-/DC-,	Terminal 🕀			
Model Name	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)	
VFD450CP43S-00		50mm ² [1/0AWG]	M8			M8	
VFD550CP43S-00	70mm ²	70mm ² [2/0AWG]	80kg-cm	35mm ²	25mm ²	80kg-cm	
VFD450CP43S-21	[2/0AWG]	50mm ² [1/0AWG]	[69.4lb-in.]	[2AWG]	[4AWG]	[69.4lb-in.]	
VFD550CP43S-21		70mm ² [2/0AWG]	[7.84Nm]			[7.84Nm]	

Chapter 5 Main Circuit Terminals | CP2000

Frame D

- If you install at Ta 40°C environment, please select copper wire with voltage rating 600V and temperature resistant at 75°C or 90°C.
- If you install at Ta 40°C above environment, please select copper wire with voltage rating 600V and temperature resistant at 90°C or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistant at 75°C which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wire.

	R/L1 , S/L2 ,	Main Circuit Termina T/L3 , U/T1 , V/T2 , W	ls //T3, -/DC-,	Terminal 🕀				
Madal Nama		+1/DC+			lonninai			
Model Name	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)		
VFD370CP23A-00		120mm ² [4/0AWG]	M8 180kg-cm	120mm ² [4/0AWG]	70mm ² [2/0AWG]			
VFD450CP23A-00		150mm ² [300MCM]		150mm ² [300MCM]	95mm ² [3/0AWG]			
VFD450CP43A-00	150mm ²	50mm ² [1/0AWG]		50mm ² [1/0AWG]	25mm ² [4AWG]	M8 180kg-cm		
VFD550CP43A-00	[300MCM]	70mm ² [2/0AWG]		70mm ² [2/0AWG]	35mm ² [2AWG]			
VFD750CP43A-00		120mm ² [4/0AWG]		120mm ² [4/0AWG]	70mm ² [2/0AWG]			
VFD900CP43A-00		150mm ² [300MCM]	[156.2lb-in.] [17.65Nm]	150mm ² [300MCM]	95mm ² [3/0AWG]	[156.2lb-in.] [17.65Nm]		
VFD370CP23A-21		$120 \text{mm}^2 [4/0.000 \text{G}]$		120mm ²	70mm ²			
VFD450CP23A-21				[4/0AWG]	[2/0AWG]			
VFD450CP43A-21	120mm ²	50mm ² [1/0AWG]		50mm ² [1/0AWG]	25mm ² [4AWG]			
VFD550CP43A-21	[4/0AWG]	70mm ² [2/0AWG]		70mm ² [2/0AWG]	35mm ² [2AWG]			
VFD750CP43A-21]	$120 \text{mm}^2 [4/0.0 \text{M}_{\text{Cl}}]$		120mm ²	70mm ²			
VFD900CP43A-21				[4/0AWG]	[2/0AWG]			

Frame E

R/L1	S/L2	T/L3	+1/DC+	-/DC-	U/T1	V/T2	W/T3	
) (() (,		

- If you install at Ta 40°C environment, please select copper wire with voltage rating 600V and temperature resistant at 75°C or 90°C.
- If you install at Ta 40°C above environment, please select copper wire with voltage rating 600V and temperature resistant at 90°C or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistant at 75°C which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wire.
- ④ Specification of grounding wire: Use 1 cable for both motor and power side, choose from minimum wire gauge of each model on the table below.

	R/L1 , S/L2 ,	Main Circuit Termin T/L3, U/T1, V/T2,	als W/T3, -/DC-,	Terminal 🕀					
Model Name		+1/DC+							
Model Name	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)			
VFD550CP23A-00		70mm ² *2 [2/0AWG*2]			70mm ² *2 [2/0AWG*2]				
VFD750CP23A-00		95mm ² *2 [3/0AWG*2]			95mm ² *2 [3/0AWG*2]	Mo			
VFD900CP23A-00		120mm ² *2 [4/0AWG*2]	M8 200kg om	120mm ² *2	120mm ² *2 [4/0AWG*2]				
VFD1100CP43A-00	120mm ² *2	70mm ² *2			70mm ² *2	1018 200kg.cm			
VFD1320CP43A-00	12011111 2 [//Δ\//G*2]	[2/0Δ\N/G*2]	[173 6lb_in]		[2/0A\\/G*2]	[173 6lb_in]			
VFD550CP23A-21			[17 6Nm]			[17 0.010-111.]			
VFD750CP43A-21		95mm ² *2 [3/0AWG*2]			95mm ² *2 [3/0AWG*2]				
VFD900CP43A-21		120mm ² *2 [4/0AWG*2]			120mm ² *2 [4/0AWG*2]				
VFD1100CP23A-21]	70mm ² *2			70mm ² *2				
VFD1320CP43A-21		[2/0AWG*2]			[2/0AWG*2]				

Chapter 5 Main Circuit Terminals | CP2000

Frame F

- If you install at Ta 40°C environment, please select copper wire with voltage rating 600V and temperature resistant at 75°C or 90°C.
- If you install at Ta 40°C above environment, please select copper wire with voltage rating 600V and temperature resistant at 90°C or above.
- For VFD1850CP43B-21, if you install at Ta 30°C above environment, please select copper wire with voltage rating 600V and temperature resistant at 90°C or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistant at 75°C which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wire.

Model Name	R/L1 , S/L2 ,	Main Circuit Termina T/L3 [,] U/T1 [,] V/T2 ^{, v} +1/DC+	als W/T3, -/DC-,	Terminal 🕀			
Model Malle	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)	
VFD1600CP43A-00	150mm ² *2	120mm ² *2 [4/0AWG*2]	M8	120mm ² *2 [4/0AWG*2]		M8	
VFD1850CP43B-00	[300MCM*2]	150mm ² *2 [300MCM*2]	180kg-cm [156.2lb-in.]	150mm ² *2 [300MCM*2]	120mm ² *2 [4/0AWG*2]	180kg-cm [156.2lb-in.]	
VFD1600CP43A-21	120mm ² *2	120mm ² *2	[17.65Nm]	120mm ² *2		[17.65Nm]	
VFD1850CP43B-21	[4/0AWG*2]	[4/0AWG*2]		[4/0AWG*2]			

Frame G

- If you install at Ta 40°C environment, please select copper wire with voltage rating 600V and temperature resistant at 75°C or 90°C.
- If you install at Ta 40°C above environment, please select copper wire with voltage rating 600V and temperature resistant at 90°C or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistant at 75°C which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wire.

	ا R/L11 [,] R/L1	Main Circuit Termina 2,S/L21,S/L22,	als T/L31,T/L32	Terminal 🕀			
Model Name	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)	
VFD2200CP43A-00		95mm ^{2*} 4 [3/0AWG*4]		95mm ² *4 [3/0AWG*4]	95mm ² *2 [3/0AWG*2]		
VFD2800CP43A-00	120mm ² *4	120mm ² *4 [4/0AWG*4]	M8 180kg-cm [156.2lb-in.] [17.65Nm]	120mm ^{2*} 4 [4/0AWG*4]	120mm ² *2 [4/0AWG*2]	M8 180kg-cm [156.2lb-in.] [17.65Nm]	
VFD2200CP43A-21	[250MCM*4]	70mm ^{2*} 4 [2/0AWG*4]		70mm ^{2*} 4 [2/0AWG*4]	70mm ² *2 [2/0AWG*2]		
VFD2800CP43A-21		95mm ² *4 [3/0AWG*4]		95mm ² *4 [3/0AWG*4]	95mm ² *2 [3/0AWG*2]		
	U/T1,V	//T2,W/T3,+1/D(ais C+,-/DC-		Terminal 🕀		
Model Name	U/T1,\ U/T1,\ Max. Wire Gauge	Main Circuit Termina //T2,W/T3,+1/D(Min. Wire Gauge	ais C+ [,] -/DC- Screw Spec. and Torque (±10%)	Max. Wire Gauge	Terminal 🕀 Min. Wire Gauge	Screw Spec. and Torque (±10%)	
Model Name VFD2200CP43A-00	U/T1,V Max. Wire Gauge	Main Circuit Termina //T2,W/T3,+1/D(Min. Wire Gauge 240mm ² *2 [400MCM*2]	ais C+ [,] -/DC- Screw Spec. and Torque (±10%)	Max. Wire Gauge 240mm ^{2*} 2 [400MCM*2]	Terminal Min. Wire Gauge 240mm ^{2*1} [400MCM*1]	Screw Spec. and Torque (±10%)	
Model Name VFD2200CP43A-00 VFD2800CP43A-00	U/T1 · V Max. Wire Gauge 240mm ² *2	Main Circuit Termina //T2 , W/T3 , +1/D0 Min. Wire Gauge 240mm ^{2*2} [400MCM*2] 240mm ^{2*2} [500MCM*2]	als C+ [,] -/DC- Screw Spec. and Torque (±10%) M12 408kg-cm	Max. Wire Gauge 240mm ^{2*} 2 [400MCM*2] 240mm ^{2*} 2 [500MCM*2]	Terminal Min. Wire Gauge 240mm ^{2*1} [400MCM*1] 240mm ^{2*1} [500MCM*1]	Screw Spec. and Torque (±10%) M8 180kg-cm	
Model Name VFD2200CP43A-00 VFD2800CP43A-00 VFD2200CP43A-21	U/T1 - V Max. Wire Gauge 240mm ^{2*} 2 [500MCM*2]	Main Circuit Termina //T2 · W/T3 · +1/D(Min. Wire Gauge 240mm ^{2*} 2 [400MCM*2] 240mm ^{2*} 2 [500MCM*2] 240mm ^{2*} 2 [400MCM*2]	AIS C+ [,] -/DC- Screw Spec. and Torque (±10%) M12 408kg-cm [354.1lb-in.] [39.98Nm]	Max. Wire Gauge 240mm ^{2*2} [400MCM*2] 240mm ^{2*2} [500MCM*2] 240mm ^{2*2} [400MCM*2]	Terminal Min. Wire Gauge 240mm ^{2*1} [400MCM*1] 240mm ^{2*1} [500MCM*1] 240mm ^{2*1} [400MCM*1]	Screw Spec. and Torque (±10%) M8 180kg-cm [156.2lb-in.] [17.65Nm]	

Chapter 5 Main Circuit Terminals | CP2000

Frame H

R/L11 R/L12	S/L21 S/L22	T/L31 T/L32	+1/DC+	-/DC-	U/T1	V/T2	W/T3
0							()
	• • •)	ß		6	

- If you install at Ta 40°C environment, please select copper wire with voltage rating 600V and temperature resistant at 75°C or 90°C.
- If you install at Ta 40°C above environment, please select copper wire with voltage rating 600V and temperature resistant at 90°C or above.
- For VFD5000CP43A-00, VFD5000CP43C-00, VFD5000CP43C-21, if you install at Ta 30°C above environment, please select copper wire with voltage rating 600V and temperature resistant at 90°C or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistant at 75°C which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wire.

Madal Nama	R/L11 · R/L1 U/T1 · \	Main Circuit Termin 2,S/L21,S/L22, //T2,W/T3,-/DC-	als T/L31,T/L32, -,+1/DC+	Terminal 🕀			
Model Name	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)	Max. Wire Gauge	Min. Wire Gauge	Screw Spec. and Torque (±10%)	
VFD3150CP43A-00		120mm ² *4 [4/0AWG*4]		120mm ² *4 [4/0AWG*4]	120mm ² *2 [4/0AWG*2]		
VFD3550CP43A-00		120mm ² *4 [250MCM*4]		120mm ² *4 [250MCM*4]	120mm ² *2 [250MCM*2]		
VFD4000CP43A-00		150mm ² *4 [300MCM*4]		150mm ^{2*4} [300MCM*4]	150mm ² *2 [300MCM*2]		
VFD5000CP43A-00		185mm ² *4 [350MCM*4]		185mm ² *4 [350MCM*4]	185mm ² *2 [350MCM*2]		
VFD3150CP43C-00		120mm ^{2*} 4 [4/0AWG*4]		120mm ² *4 [4/0AWG*4]	120mm ² *2 [4/0AWG*2]		
VFD3550CP43C-00	185mm ² *4	120mm ^{2*} 4 [250MCM*4]	M8 180kg-cm	120mm ² *4 [250MCM*4]	120mm ² *2 [250MCM*2]	M8 180kg-cm	
VFD4000CP43C-00	[350MCM*4]	150mm ² *4 [300MCM*4]	[156.2lb-in.] [17.65Nm]	150mm ² *4 [300MCM*4]	150mm ² *2 [300MCM*2]	[156.2lb-in.] [17.65Nm]	
VFD5000CP43C-00		185mm ^{2*} 4 [350MCM*4]		185mm ^{2*} 4 [350MCM*4]	185mm ² *2 [350MCM*2]		
VFD3150CP43C-21		120mm ^{2*} 4 [4/0AWG*4]		120mm ² *4 [4/0AWG*4]	120mm ² *2 [4/0AWG*2]		
VFD3550CP43C-21		120mm ² *4 [250MCM*4]		120mm ² *4 [250MCM*4]	120mm ² *2 [250MCM*2]		
VFD4000CP43C-21		150mm ^{2*} 4 [300MCM*4]		150mm ² *4 [300MCM*4]	150mm ² *2 [300MCM*2]		
VFD5000CP43C-21		185mm ² *4 [350MCM*4]		185mm ² *4 [350MCM*4]	185mm ² *2 [350MCM*2]		

Chapter 6 Control Terminals

- 6-1 Remove the Cover for Wiring
- 6-2 Specifications of Control Terminal
- 6-3 Remove the Terminal Block

Analog input terminals (AVI1, AVI2, ACI, ACM)

- ☑ Analog input signals are easily affected by external noise. Use shielded wiring and keep it as short as possible (<20m) with proper grounding. If the noise is inductive, connecting the shield to terminal ACM can bring improvement.</p>
- ☑ When using analog input signal in the circuit, twisted pair is suggested to use for dealing with weak signal.
- ☑ If the analog input signals are affected by noise from the AC motor drive, please connect a capacitor and ferrite core as indicated in the following diagram.

Digital inputs (FWD, REV, MI1~MI8, COM)

- ☑ When using contacts or switches to control the digital inputs, please use high quality components to avoid contact bounce.
- ☑ The "COM" terminal is the common side of the photo-coupler. Any of wiring method, the "common point" of all photo-coupler must be the "COM".

When the photo-coupler is using internal power supply, the switch connection for Sink and Source as below:
"MI" links to "DCM": Sink mode
"MI" links to "+24V": Source mode
When the photo-coupler is using external power supply, please remove the short circuit cable between the +24V and COM terminals. The connection mode is Sink mode or Source mode is according to the below:
The "+" of 24V connecting to "COM: Sink mode
The "-" of 24V connecting to COM: Source mode

6-1 Remove the Cover for Wiring

Please remove the top cover before wiring the multi-function input and output terminals,

The drive appearances shown in the figures are for reference only, a real drive may look different.

6-2 Specifications of Control Terminal

	A
O-10V AFM1 0/4-20mA 0/4-20mA 0/4-20mA 0/4-20mA 0/4-20mA 0/4-20mA 0/4-20mA 0/4-20mA 0/4-20mA 0-10V 0/4-20mA 120	RC3 RA3 RC2 RA2 RC1 RB1 RA1
AFM1 +10V AVI1 ACI STO1 STO2 +24VI +24V COM FWD MI1 MI3 MI5 MI7 SC	
AFM2 ACM AVI2 ACM SCM1 SCM2 DCM DCM REV MI2 MI4 MI6 MI8 SG+	- <u>SG</u> -

Removable Terminal Block

Wire Gauge: (A) (C) 0.2~1.5mm² / [24~16AWG] ; (B) 0.2~1.5mm² / [26~16AWG]

Torque: (A) 5kg-cm / [4.3lb-in.] / [0.49Nm] (As shown in figure above)

- B 8kg-cm / [6.94lb-in.] / [0.78Nm] (As shown in figure above)
- © 2kg-cm / [1.73 lb-in.] / [0.19 Nm] (As shown in figure above)

Wiring precautions:

- In the figure above, the factory setting for STO1, STO2, +24V and SCM1, SCM2, DCM are short circuit. The +24V is for STO only, and cannot be used for other purposes. The factory setting for +24V-COM is short circuit and SINK mode (NPN); please refer to Chapter 4 Wiring for more detail.
- Tighten the wiring with slotted screwdriver:

B is 3.5mm (wide) x 0.6mm (thick); C is 2.5mm (wide) x 0.4mm (thick)

- The ideal length of stripped wire at the connection side is 5mm.
- When wiring bare wires, make sure they are perfectly arranged to go through the wiring holes.

Terminals	Terminal Function	Factory Setting (NPN mode)
+24V	Digital control signal common (Source)	+24V±5% 200mA
COM	Digital control signal common (Sink)	Common for multi-function input terminals
FWD	Forward-Stop command	FWD-DCM: ON➔ forward running OFF➔ deceleration to stop
REV	Reverse-Stop command	REV-DCM: ON➔ reverse running OFF➔ deceleration to stop
MI1 ~ Multi-function input 1~8 MI8		Refer to parameters 02-01~02-08 to program the multi-function inputs MI1~MI8. Source Mode ON: the activation current is $3.3mA \ge 11VDC$ OFF: leakage current tolerance is $\le 5VDC$ Sink Mode
		ON: the activation current is $3.3\text{mA} \le 13\text{VDC}$ OFF: leakage current tolerance is $\ge 19\text{VDC}$
DCM	Digital frequency signal common	Regard the pulse as the output monitor signal Duty-cycle: 50% Min. load impedance: 1kΩ/100pf Max. current: 30mA Max. voltage: 30VDC

Terminals	Terminal Function	Factory Setting (NPN mode)
RA1	Multi-function relay output 1 (N.O.) a	Resistive Load: 250VAC / 3A (N.O.), 250VAC / 3A (N.C.) 30VDC / 5A (N.O.), 30VDC / 3A (N.C.)
RB1	Multi-function relay output 1 (N.C.) b	Inductive Load (COS 0.4): 250VAC / 1.2A (N.O.) 250VAC / 1.2A (N.C.)
RC1	Multi-function relay common	It is used to output each monitor signal, such as drive is in operation, frequency attained or overload indication.
RA2	Multi-function relay output 2 (N.O.) a	Resistive Load: 250VAC / 3A (N.O.)
RC2	Multi-function relay common	30VDC / 5A (N.O.)
RA3	Multi-function relay output 3 (N.O.) a	250VAC / 1.2A (N.O.) It is used to output each monitor signal, such as drive is in
RC3	Multi-function relay common	operation, frequency attained or overload indication.
+10V	Potentiometer power supply	Analog frequency setting: +10VDC 20mA
AVI 1	Analog voltage input	Impedance: 20kΩ Range: 0~20mA/4~20mA/0~10V =0~Max. Output Frequency (Pr.01-00) AVI1 switch, factory setting is 0~10V
	Analog current input	
ACI	ACI ACI ACM ACM	Impedance: 250Ω Range: 0~20mA/4~20mA/0~10V = 0 ~ Max. Output Frequency (Pr.01-00) ACI Switch, factory setting is 4~20mA
AVI2	Auxiliary analog voltage input	Impedance: 20kΩ Range: 0~+10VDC=0 ~ Max. Output Frequency(Pr.01-00)
AFM1		0~10V Max. output current 2mA, Max. load 5kΩ 0~20mA Max. load 500Ω Output current: 20mA max Resolution: 0~10V corresponds to Max. operation frequency
AFM2	€ EO-	Range: 0~10V → 4~20mA AFM1/ AFM 2 Switch, factory setting is 0~10V
ACM	Analog Signal Common	Common for analog terminals
5101	Default setting is shorted	
SCM1	Power removal safety function for	or EN954-1 and IEC/EN61508 M2 is activated, the activation surrant is $2.2mA > 111/DC$
S102	Note: Please refer to CH 12 Set	wiz is activated, the activation current is 3.3 mA ≥ 11 VDC e. Torque off Function
SUM2		פ וטוקעפ טון רעווטנוטון.
SC	IVIUDUO RO-400 Note: Please refer to CH12 DEG	
SGND	Communication Paramete	rs for more information.
	PIN 1,2,7,8 : Reserved	PIN 3, 6: SGND
KJ-45	PIN 4: SG-	PIN 5: SG+

NOTE: Wire size of analog control signals: 18 AWG [0.75 mm²] with shielded wire

6-3 Remove the Terminal Block

1. Loosen the screws by screwdriver. (As shown in figure below). Screw torque: 8~10kg-cm / [6.9~8.7lb-in] / [0.78~0.98Nm]

2. Remove the control board by pulling it out for a distance 6~8 cm (as 1 in the figure) then lift the control board upward (as 2 in the figure).

Chapter 7 Optional Accessories

- 7-1 Brake Resistors and Brake Units Selection Chart
- 7-2 Non-fuse Circuit Breaker
- 7-3 Fuse Specification Chart
- 7-4 AC/DC Reactor
- 7-5 Zero Phase Reactor
- 7-6 EMC Filter
- 7-7 Digital Keypad
- 7-8 Panel Mounting
- 7-9 Conduit Box Kit
- 7-10 Fan Kit
- 7-11 Flange Mounting Kit
- 7-12 USB/RS-485 Communication Interface IF6530

Chapter 7 Optional Accessories | CP2000

The optional accessories listed in this chapter are available upon request. Installing additional accessories to your drive would substantially improve the drive's performance. Please select an applicable accessory according to your need or contact the local distributor for suggestion.

7-1 Brake Resistors and Brake Units Selection Chart

230V Model

Appli Mo	cable tor			125% Brak		Max. Brake Torque *2					
HP	kW	Braking Torque [kg-m]	Brake Unit	Braking Res each Bra	istor s ake Ur	eries for hit *4	Resistor value spec. for each	Total Braking	Min. Resistor	Max. Total Braking	Peak Power
1	0.7	0.5	-	BR080W200	0. iy 1	- Usaye	80W2000		63.3		2.3
2	1.5	0.5	_	BR080W200	1	_	80W200Ω	1.9	63.3	6	2.3
3	2.2	1.0	-	BR200W091	1	-	200W91Ω	4.2	47.5	8	3.0
5	3.7	1.5	-	BR300W070	1	-	300W70Ω	5.4	38.0	10	3.8
7.5	5.5	2.5	-	BR400W040	BR400W040 1		400W40Ω	9.5	19.0	20	7.6
10	7.5	3.7	-	BR1K0W020	1	-	1000W20Ω	19	14.6	26	9.9
15	11	5.1	-	BR1K0W020	1	-	1000W20Ω	19	14.6	26	9.9
20	15	7.4	-	BR1K5W013	1	-	1500W13Ω	29	12.6	29	11.0
25	18	10.2	-	BR1K0W4P3	2	2 series	2000W8.6Ω	44	8.3	46	17.5
30	22	12.2	-	BR1K0W4P3	2	2 series	2000W8.6Ω	44	8.3	46	17.5
40	30	14.9	-	BR1K5W3P3	2	2 series	3000W6.6Ω	58	5.8	66	25.1
50	37	20.3	2015*2	BR1K0W5P1	2	2 series	4000W5.1Ω	75	4.8	80	30.4
60	45	25	2022*2	BR1K2W3P9	2	2 series	4800W3.9Ω	97	3.2	120	45.6
75	55	30.5	2022*2	BR1K5W3P3	2	2 series	6000W3.3Ω	118	3.2	120	45.6
100	75	37.2	2022*3	BR1K2W3P9	2	2 series	7200W2.6Ω	145	2.1	180	68.4
125	90	50.8	2022*4	BR1K2W3P9	2	2 series	9600W2Ω	190	1.6	240	91.2

460V Model

Appli Mc	cable otor			125%B	raking To	rque 10%ED) * ¹		Max. I	Brake Torque	e *2
HP	kW	Braking Torque	Brake Unit	Braking Resi Bra	stor serie ke Unit *'	s for each	Resistor value spec. for each	Total Braking	Min. Resistor	Max. Total Braking	Peak Power
		[kg-m]	VFDB *3	P/N	Q'ty	Usage	AC motor Drive	Current [A]	Value [Ω]	Current [A]	[kW]
1	0.7	0.5	-	BR080W750	1	-	80W750Ω	1	190.0	4	3.0
2	1.5	0.5	-	BR080W750	1	-	80W750Ω	1	190.0	4	3.0
3	2.2	1.0	-	BR200W360	1	-	200W360Ω	2.1	126.7	6	4.6
5	3.7	1.5	-	BR300W250	1	-	300W250Ω	3	108.6	7	5.3
5.5	4.0	2.5	-	BR400W150	1	-	400W150Ω	5.1	84.4	9	6.8
7.5	5.5	2.7	-	BR1K0W075	1	-	1000W75Ω	10.2	54.3	14	10.6
10	7.5	3.7	-	BR1K0W075	1	-	1000W75Ω	10.2	54.3	14	10.6
15	11	5.1	-	BR1K0W075	1	-	1000W75Ω	10.2	47.5	16	12.2
20	15	7.4	-	BR1K5W043	1	-	1500W43Ω	17.6	42.2	18	13.7
25	18	10.2	-	BR1K0W016	2	2 series	2000W32Ω	24	26.2	29	22.0
30	22	12.2	-	BR1K0W016	2	2 series	2000W32Ω	24	23.0	33	25.1
40	30	14.9	-	BR1K5W013	2	2 series	3000W26Ω	29	23.0	33	25.1
50	37	20.3	-	BR1K0W016	4	2 parallel, 2 series	4000W16Ω	47.5	14.1	54	41.0
60	45	25	4045*1	BR1K2W015	4	2 parallel, 2 series	4800W15Ω	50	12.7	60	45.6
75	55	30.5	4045*1	BR1K5W013	4	2 parallel, 2 series	6000W13Ω	59	12.7	60	45.6
100	75	37.2	4030*2	BR1K0W5P1	4	4 series	8000W10.2Ω	76	9.5	80	60.8
125	90	50.8	4045*2	BR1K2W015	4	2 parallel, 2 series	9600W7.5Ω	100	6.3	120	91.2
150	110	60.9	4045*2	BR1K5W013	4	2 parallel, 2 series	12000W6.5Ω	117	6.3	120	91.2

460V Model

Appli Mo	cable otor	125%Braking Torque 10%ED *1							Max. Brake Torque *2		
HP	kW	Braking Torque	Brake Unit	Braking Resi Bra	stor series ke Unit *4	for each	Resistor value spec. for each	Total Braking	Min. Resistor	Max. Total Braking	Peak Power
		[kg-m]	VFDB *3	P/N	P/N Q'ty Usage AC motor Dr		AC motor Drive	Current [A]	Value [Ω]	Current [A]	[kW]
175	132	74.5	4110*1	BR1K2W015	10	5 parallel, 2 series	12000W6Ω	126	6.0	126	95.8
215	160	89.4	4160*1	BR1K5W012	12	6 parallel, 2 series	18000W4Ω	190	4.0	190	144.4
250	185	108.3	4160*1	BR1K5W012	12	6 parallel, 2 series	18000W4Ω	190	4.0	190	144.4
300	220	125.2	4185*1	BR1K5W012	14	7 parallel, 2 series	21000W3.4Ω	225	3.4	225	172.1
375	280	148.9	4110*2	BR1K2W015	10	5 parallel, 2 series	24000W3Ω	252	3.0	252	190.5
425	315	189.6	4160*2	BR1K5W012	12	6 parallel, 2 series	36000W2Ω	380	2.0	380	288.8
475	355	213.3	4160*2	BR1K5W012	12	6 parallel, 2 series	36000W2Ω	380	2.0	380	288.8
536	400	240.3	4185*2	BR1K5W012	14	7 parallel, 2 series	42000W1.7Ω	450	1.7	450	344.2
675	500	304.7	4185*3	BR1K5W012	12	6 parallel, 2 series	54000W 1.3Ω	600	1.1	675	513.0

575V Model

Appli Moto	cable r [kW]			125%Br		Max. Brake Torque *2					
	חו	Braking Torque	Brake Unit	Braking Resi Bra	stor serie ike Unit *'	s for each	Resistor value	Total Braking	Min. Resistor	Max. Total Braking	Peak
	LD	[kg-m]	VFDB *3	P/N	Q'ty	Usage	AC motor Drive	Current [A]	Value [Ω]	Current [A]	[kW]
0.75	1.5	0.5	-	BR080W750	1	-	80W 750Ω	1.2	280.0	4	4.5
1.5	2.2	1	-	BR200W360	1	-	200W 360Ω	2.6	186.7	6	6.7
2.2	3.7	1.5	-	BR300W400	1	-	300W 400Ω	2.3	160.0	7	7.8
3.7	5.5	2.5	-	BR500W100	1	-	500W 100Ω	9.2	93.3	12	13.4
5.5	7.5	3.7	-	BR750W140	1	-	750W 140Ω	6.6	80.0	14	15.7
7.5	11	5.1	-	BR1K0W075	1	-	1000W 75Ω	12.3	70.0	16	17.9
11	15	7.4	-	BR1K1W091	1	-	1100W 91Ω	10.1	62.2	18	20.2

690V Model

Appli Moto	cable r [kW]			125%Br	aking Tor	rque 10%E	D *1		Max. Brake Torque *2			
LD	ND	Braking Torque	Brake Unit	Braking Resi Bra	stor serie Ike Unit *	s for each	Resistor value spec. for each	Total Braking	Min. Resistor	Max. Total Braking	Peak Power	
		[kg-m]	VFDB *3	P/N	Q'ty	Usage	AC motor Drive	Current [A]	Value [Ω]	Current [A]	[kW]	
18.5	15	10.2	-	BR1K0W039	2	2 series	2000W 78Ω	14.4	58.9	19	21.3	
22	18.5	12.5	-	BR1K2W033	2	2 series	2400W 66Ω	17.0	58.9	19	21.3	
30	22	14.9	-	BR1K5W027	2	2 series	3000W 54Ω	20.7	43.1	26	29.1	
37	30	20.3	-	BR1K2W015	3	3 series	3600W 45Ω	24.9	43.1	26	29.1	
45	37	25	6055*1	BR1K2W033	4	2 parallel, 2 series	4800W 33Ω	33.9	24.3	46	51.5	
55	45	30.5	6055*1	BR1K5W027	4	2 parallel, 2 series	6000W 27Ω	41.5	24.3	46	51.5	
75	55	37.2	6110*1	BR1K2W033	6	3 parallel, 2 series	7200W 22Ω	50.9	12.2	92	103.0	
90	75	50.8	6110*1	BR1K5W027	6	3 parallel, 2 series	9000W 18Ω	62.2	12.2	92	103.0	
110	90	60.9	6110*1	BR1K5W027	8	4 parallel, 2 series	12000W 13.5Ω	83.0	12.2	92	103.0	

Chapter 7 Optional Accessories | CP2000

Appli Motor	cable r [kW]			125%Br	aking Tor	que 10%E	D *1		Max. Brake Torque *2			
LD	ND	Braking Torque	Brake Unit	Braking Resi Bra	Resistor series for Brake Unit *4		Resistor value	Total Braking	Min. Resistor	Max. Total Braking	Peak Power	
		[kg-m]	VFDB *3	P/N	Q'ty	Usage	AC motor Drive	Current [A]	Value [Ω]	Current [A]	[kW]	
132	110	74.5	6160*1	BR1K2W015	12	4 parallel, 3 series	14400W 11.3Ω	99.6	8.2	136	152.3	
160	132	89.4	6160*1	BR1K5W027	10	5 parallel, 2 series	15000W 10.8Ω	103.7	8.2	136	152.3	
200	160	108.3	6200*1	BR1K5W027	12	6 parallel, 2 series	18000W 9.0Ω	124.4	6.9	162	181.4	
250	200	135.4	6110*2	BR1K5W027	8	4 parallel, 2 series	24000W 6.8Ω	165.9	6.1	184	206.1	
315	250	169.3	6160*2	BR1K5W027	10	5 parallel, 2 series	30000W 5.4Ω	207.4	4.1	272	304.6	
400	315	213.3	6200*2	BR1K5W027	12	6 parallel, 2 series	36000W 4.5Ω	248.9	3.5	324	362.9	
450	355	240.3	6200*2	BR1K5W027	14	7 parallel, 2 series	42000W 3.9Ω	290.4	3.5	324	362.9	
560	450	304.7	6200*3	BR1K5W027	12	6 parallel, 2 series	54000W 3.0Ω	373.3	2.3	486	544.3	
630	630	426.5	6200*4	BR1K5W027	12	6 parallel, 2 series	72000W 2.3Ω	497.8	1.7	648	725.8	

*1 Calculation for 125% brake toque: (kW)*125%*0.8; where 0.8 is motor efficiency.

Because there is a resistor limit of power consumption, the longest operation time for 10%ED is 10sec (on: 10sec/ off: 90sec).

*2 Please refer to the Brake Performance Curve for "Operation Duration & ED" vs. "Braking Current".

*3 The calculation of braking resistor is based on the 4 poles motor (1800rpm). Please refer to VFDB series Braking Module Instruction for more detail on braking resistor.

*4 For heat dissipation, a resistor of 400W or lower should be fixed to the frame and maintain the surface temperature below 250°C; a resistor of 1000W and above should maintain the surface temperature below 600°C.

1. Specifications and Appearances of Brake Resistors

1-1 Wire Wound Resistors: For 1000W (included) and above, see Figure 7-1 for product appearances and

Table 7-1 for model and specification comparison.

Figure 7-1

Linit[.] mm

MODEL	A	В	С	D	E	F	G	Н	Ø	ØЈ	К	L
BR1K0W4P3												
BR1K0W5P1												
BR1K0W016												
BR1K0W020												
BR1K0W075												
BR1K2W3P9	470±10	445 ± 5	48±0.2	9.1±0.1	390±3	98±5	47 ± 5	15 ± 1	55 ± 5	8.1 ± 0.1	21±0.2	8 ± 1
BR1K2W015												
BR1K5W3P3												
BR1K5W012												
BR1K5W013												
BR1K5W043												

Models and Specifications Comparison Table of Wire Wound Resistors:

Table 7-1

1-2 Aluminum Housed Resistors: For less than 1000W.

For more information, see Figure 7- 2 for product appearances and Table 7-2 for model and specification comparison.

MODEL	L1	L2	L3	W	Н	А	L
BR080W200	140+2	125+2	100+1	40±05	20+05		
BR080W750	140⊥Z	12512	100±1	40±0.5	20±0.5		
BR200W091	165+2	150+2	125+1				
BR200W360	105±2	150±2	12511				200 20
BR300W070	215+2	200+2	175+1	60±05	20⊥0 E	5.3±0.5	200±20
BR300W250	21512 20012		175±1	00±0.5	30 ± 0.5		
BR400W040	00510	2501.0	225 1 4				
BR400W150	205±2	230±2	223⊥1				
			Tabl	e 7-2			
							Unit: mm

2. Definition for Brake Usage ED%

Explanation: The definition of the brake usage ED (%) is for assurance of enough time for the brake unit and brake resistor to dissipate away heat generated by braking. When the brake resistor heats up, the resistance would increase with temperature, and brake torque would decrease accordingly. Recommended cycle time is one minute.

Chapter 7 Optional Accessories | CP2000

For safety concern, install an overload relay (O.L) between the brake unit and the brake resistor in conjunction with the magnetic contactor (MC) prior to the drive for abnormal protection. The purpose of installing the thermal overload relay is to protect the brake resistor from damage due to frequent brake, or due to brake unit, keeping operating resulted from unusual high input voltage. Under such circumstance, just turn off the power to prevent damaging the brake resistor.

- When AC Drive is equipped with a DC reactor, please read user manual to know the wiring method of input circuit of brake unit +(P).
- DO NOT connect input circuit -(N) to the neutral point of the power system.
- 1. If damage to the drive or other equipment is due to the fact that the brake resistors and brake modules in use are not provided by Delta, the warranty will be void.
- 2. Take into consideration the safety of the environment when installing the brake resistors. If the minimum resistance value is to be utilized, consult local dealers for the calculation of Watt figures.
- 3. When using more than 2 brake units, equivalent resistor value of parallel brake unit can't be less than the value in the column "Minimum Equivalent Resistor Value for Each AC Drive" (the right-most column in the table). Please read the wiring information in the user manual of brake unit thoroughly prior to operation
- This chart is for normal usage; if the AC motor drive is applied for frequent braking, it is suggested to enlarge 2~3 times of the Watts.
- 5. Thermal Relay:

Thermal relay selection is basing on its overload capability. A standard braking capacity for CP2000 is 10%ED (Tripping time=10s). The figure below is an example of 460V, 110kW AC motor drive. It requires the thermal relay to take 260% overload capacity in 10s (Host starting) and the braking current is 126A. In this case, user should select a rated 50A thermal relay. The property of each thermal relay may vary among different manufacturer, please carefully read specification.

7-2 Non-fuse Circuit Breaker

Comply with UL standard: Per UL 508, paragraph 45.8.4, part a,

The rated current of the breaker shall be 1.6~2.6 times of the maximum rated input current of AC motor drive.

3-phase 23	30V	3-phase 460V				
Model	Recommended non-fuse breaker [A]	Model	Recommended non-fuse breaker [A]			
VFD007CP23A-21	15	VFD007CP43A-21/4EA-21	10			
VFD015CP23A-21	20	VFD015CP43B-21/4EB-21	10			
VFD022CP23A-21	30	VFD022CP43B-21/4EB-21	15			
VFD037CP23A-21	40	VFD040CP43A-21/4EA-21	25			
VFD055CP23A-21	50	VFD037CP43B-21/4EB-21	30			
VFD075CP23A-21	60	VFD055CP43B-21/4EB-21	40			
VFD110CP23A-21	100	VFD075CP43B-21/4EB-21	40			
VFD150CP23A-21	125	VFD110CP43B-21/4EB-21	50			
VFD185CP23A-21	150	VFD150CP43B-21/4EB-21	60			
VFD220CP23A-21	200	VFD185CP43B-21/4EB-21	75			
VFD300CP23A-21	225	VFD220CP43A-21/4EA-21	100			
VFD370CP23A-00/23A-21	250	VFD300CP43B-21/4EB-21	125			
VFD450CP23A-00/23A-21	300	VFD370CP43B-21/4EB-21	150			
VFD550CP23A-00/23A-21	400	VFD450CP43S-00/43S-21	175			
VFD750CP23A-00/23A-21	450	VFD550CP43S-00/43S-21	250			
VFD900CP23A-00/23A-21	600	VFD750CP43B-00/43B-21	300			
		VFD900CP43A-00/43A-21	300			
		VFD1100CP43A-00/43A-21	400			
		VFD1320CP43B-00/43B-21	500			
		VFD1600CP43A-00/43A-21	600			
		VFD1850CP43B-00/43B-21	600			
		VFD2200CP43A-00/43A-21	800			
		VFD2800CP43A-00/43A-21	1000			
		VFD3150CP43A-00/43C-00/	1200			
		VFD3150CP43C-21	1200			
		VFD3550CP43A-00/43C-00/	1350			
		VFD3550CP43C-21	1000			
		VFD4000CP43A-00/43C-00/	1500			
		VFD4000CP43C-21				
		VFD5000CP43A-00/43C-00/	2000			
		VFD5000CP43C-21	2000			

3-phase 575V									
Model	Recommended non-fuse breaker [A]								
VFD015CP53A-21	7								
VFD022CP53A-21	10								
VFD037CP53A-21	15								
VFD055CP53A-21	25								
VFD075CP53A-21	32								
VFD110CP53A-21	50								
VFD150CP53A-21	63								

3-phase 690V									
Model	Recommended non-fuse breaker [A]								
VFD185CP63A-21	60								
VFD220CP63A-21	70								
VFD300CP63A-21	80								
VFD370CP63A-21	100								
VFD450CP63A-00/-21	100								
VFD550CP63A-00/-21	125								
VFD750CP63A-00/-21	175								
VFD900CP63A-00/-21	200								
VFD1100CP63A-00/-21	250								
VFD1320CP63A-00/-21	300								
VFD1600CP63A-00/-21	350								
VFD2000CP63A-00/-21	400								
VFD2500CP63A-00/-21	450								
VFD3150CP63A-00/-21	500								
VFD4000CP63A-00/-21	700								
VFD4500CP63A-00/-21	800								
VFD5600CP63A-00/-21	1250								
VFD6300CP63A-00/-21	1400								

7-3 Fuse Specification Chart (Fuse specifications less than the following table are allowed)

- ☑ "For installation in the United States, branch circuit protection must be provided in accordance with the National Electrical Code (NEC) and any applicable local codes. To fulfill this requirement, use the UL classified fuses"
- ☑ For installation in Canada, branch circuit protection must be provided in accordance with Canadian Electrical Code and any applicable provincial codes. To fulfill this requirement, use the UL classified fuses"
- ☑ Short-circuit current rating (SCCR): Per UL508C, the drive is suitable for use on a circuit capable of delivering not more than 100kA symmetrical amperes (rms) when protected by fuses given in the fuse table.

	Input Cu	rent I [A]	Line Fuse			
	Normal Duty	Light Duty	[A] I	Bussmann P/N		
VFD007CP23A-21	3.9	6.4	15	JJN-15		
VFD015CP23A-21	6.4	9.6	20	JJN-20		
VFD022CP23A-21	12	15	30	JJN-30		
VFD037CP23A-21	16	22	40	JJN-40		
VFD055CP23A-21	20	25	50	JJN-50		
VFD075CP23A-21	28	35	60	JJN-60		
VFD110CP23A-21	36	50	100	JJN-100		
VFD150CP23A-21	52	65	125	JJN-125		
VFD185CP23A-21	72	83	150	JJN-150		
VFD220CP23A-21	83	100	200	JJN-200		
VFD300CP23A-21	99	116	225	JJN-225		
VFD370CP23A-00/23A-21	124	146	250	JJN-250		
VFD450CP23A-00/23A-21	143	180	300	JJN-300		
VFD550CP23A-00/23A-21	171	215	400	JJN-400		
VFD750CP23A-00/23A-21	206	276	450	JJN-450		
VFD900CP23A-00/23A-21	245	322	600	JJN-600		
	Input Curre	ent I [A]	l ii	e Fuse		
460V Model	Normal Duty	Light Duty	 [[]]	Bussmann P/N		
VED007CP43A-21/4EA-21	3.5	4.3	10	JJS-10		
VFD015CP43B-21/4FB-21	4.3	6.0	10	JJS-10		
VFD022CP43B-21/4FB-21	5.9	8.1	15	JJS-15		
VFD040CP43A-21/4FA-21	87	12.4	25	JJS-20		
VFD037CP43B-21/4EB-21	14	16	30	JJS-20		
VFD055CP43B-21/4EB-21	15.5	20	40	JJS-30		
VFD075CP43B-21/4EB-21	17	22	40	JJS-40		
VFD110CP43B-21/4EB-21	20	26	50	JJS-50		
VFD150CP43B-21/4EB-21	26	35	60	JJS-60		
VFD185CP43B-21/4EB-21	35	42	75	JJS-75		
VFD220CP43A-21/4EA-21	40	50	100	JJS-100		
VFD300CP43B-21/4EB-21	47	66	125	JJS-125		
VFD370CP43B-21/4EB-21	63	80	150	JJS-150		
VFD450CP43S-00/43S-21	74	91	175	JJS-175		
VFD550CP43S-00/43S-21	101	110	250	JJS-250		
VFD750CP43B-00/43B-21	114	150	300	JJS-300		
VFD900CP43A-00/43-21	157	180	300	JJS-300		
VFD1100CP43A-00/43A-21	167	220	400	JJS-400		
VFD1320CP43B-00/43B-21	207	260	500	JJS-500		
VFD1600CP43A-00/43A-21	240	310	600	JJS-600		
VFD1850CP43B-00/43B-21	300	370	600	JJS-600		
VFD2200CP43A-00/43A-21	380	460	800	JJS-800		
VFD2800CP43A-00/43A-21	400	530	1000	KTU-1000		
VFD3150CP43A-00/43C-00/43C-21	494	616	1200	KTU-1200		
VFD3550CP43A-00/43C-00/43C-21	555	683	1350	KTU-1350		
VFD4000CP43A-00/43C-00/43C-21	625	770	1500	KTU-1500		

Chapter 7 Optional Accessories | CP2000

460V Model	Input Curr	ent I [A]	Line Fuse			
400 V MOdel	Normal Duty	Light Duty	I [A]	Bussmann P/N		
VFD5000CP43A-00/43C-00/43C-21 *	866	930	1600	170M6019		

*VFD5000CP43A-00/43C-00/43C-21 models do not have UL certification.

	Input Cur	rent I [A]	Line Fuse				
575V MODEI	Normal Duty	Light Duty	I [A]	Bussmann P/N	Vendor		
VFD015CP53A-21	3.1	3.8	7	KLKD007.T	Littelfuse		
VFD022CP53A-21	4.5	5.4	10	KLKD010.T	Littelfuse		
VFD037CP53A-21	7.2	10.2	15	KLKD015.T	Littelfuse		
VFD055CP53A-21	12.3	14.9	25	25ET	Bussmann		
VFD075CP53A-21	15	16.9	32	32ET	Bussmann		
VFD110CP53A-21	18	21.3	50	50FE	Bussmann		
VFD150CP53A-21	22.8	26.3	63	63FE	Bussmann		

600V/Model	Input Curr	ent I [A]	Line Fuse		
	Normal Duty	Light Duty	I [A]	Bussmann P/N	
VFD185CP63A-21	24	29	60	JJS-60	
VFD220CP63A-21	29	36	70	JJS-70	
VFD300CP63A-21	36	43	80	JJS-80	
VFD370CP63A-21	43	54	100	JJS-100	
VFD450CP63A-00/-21	54	65	100	JJS-100	
VFD550CP63A-00/-21	65	81	125	JJS-125	
VFD750CP63A-00/-21	66	84	175	JJS-175	
VFD900CP63A-00/-21	84	102	200	JJS-200	
VFD1100CP63A-00/-21	102	122	250	JJS-250	
VFD1320CP63A-00/-21	122	147	300	JJS-300	
VFD1600CP63A-00/-21	148	178	350	JJS-350	
VFD2000CP63A-00/-21	178	217	400	JJS-400	
VFD2500CP63A-00/-21	222	292	450	170M4063	
VFD3150CP63A-00/-21	292	353	500	170M6058	
VFD4000CP63A-00/-21	353	454	700	170M6061	
VFD4500CP63A-00/-21	388	469	800	170M6062	
VFD5600CP63A-00/-21	504	595	1250	170M6066	
VFD6300CP63A-00/-21	681	681	1400	170M6067	

7-4 AC/DC Reactor

AC Input Reactor

Installing AC reactor in the input side of AC motor drive can increase line impedance, improve power factor, reduce input current, increase system capacity and reduce interference generated from motor drive. In addition, to suppress the momentary voltage surge or abnormal current spike is also one of its features. For example, when the capacity of main power is higher than 500 kVA, or switching to capacity bank, the momentary voltage and current spike may damage motor drive's internal circuit. Therefore, installing AC reactor in the input side of AC motor drive can suppress the surge to protect the AC motor drive.

Installation

AC input reactor is installed serially between the mains power and three phases input side of motor drive, which is shown as below:

Wiring of AC input reactor

Following table shows the standard AC reactors specification of CP2000

			Rated Amps of AC Reactor		Ma contin	Max. continuous		3% Impedance		5% Impedance		3% Input AC reactor	
Model	kW	ΗP	(Arn	าร)	Amps (Arms)	(ml	H)	(m	H)	DC	Delta	part #
			Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty	reactor	Normal Duty	Light Duty
VFD007CP23A-21	0.75	1	4.6	5	7.36	6	2.536	2.536	4.227	4.227	No	DR005A0254	DR005A0254
VFD015CP23A-21	1.5	2	5	7.5	8	9	2.536	1.585	4.227	2.642	No	DR005A0254	DR008A0159
VFD022CP23A-21	2.2	3	8	10	12.8	12	1.585	1.152	2.642	1.92	No	DR008A0159	DR011A0115
VFD037CP23A-21	3.7	5	11	15	17.6	18	1.152	0.746	1.92	1.243	No	DR011A0115	DR017AP746
VFD055CP23A-21	5.5	7.5	17	21	27.2	25.2	0.746	0.507	1.243	0.845	No	DR017AP746	DR025AP507
VFD075CP23A-21	7.5	10	25	31	40	37.2	0.507	0.38	0.845	0.633	No	DR025AP507	DR033AP320
VFD110CP23A-21	11	15	33	46	52.8	55.2	0.38	0.26	0.633	0.433	No	DR033AP320	DR049AP215
VFD150CP23A-21	15	20	49	61	78.4	73.2	0.26	0.196	0.433	0.327	No	DR049AP215	DR065AP162
VFD185CP23A-21	18.5	25	65	75	104	90	0.196	0.169	0.327	0.282	No	DR065AP162	DR075AP170
VFD220CP23A-21	22	30	75	90	120	108	0.169	0.141	0.282	0.235	No	DR075AP170	DR090AP141
VFD300CP23A-21	30	40	90	105	144	126	0.141	0.12	0.235	0.2	No	DR090AP141	DR105AP106
VFD370CP23A-00/ VFD370CP23A-21	37	50	120	146	192	175.2	0.12	0.087	0.2	0.145	Yes	DR105AP106	DR146AP087

Chapter 7 Optional Accessories | CP2000

			Rated Amps		Max.		3%		5%			3%										
			of AC Reactor		contin	continuous		Impedance Impe		dance Built-in		Input AC reactor										
Model	kW	HP	(Arn	าร)	Amps (Arms)	(mł	<u>+)</u>	(m	<u>H)</u>	DC	Delta part #										
			Normal	Light	Normal	Light	Normal	Light	Normal	Light	reactor	Normal	Light									
			Duty	Duty	Duty	Duty	Duty	Duty	Duty	Duty		Duty	Duty									
VFD450CP23A-00/-	45	<u> </u>	140	100	000.0	010	0.007	0.07	0.145	0 447	Vaa											
21	45	60	140	180	233.0	210	0.087	0.07	0.145	0.117	res	DIV140AF 007	DIVIOUAL 070									
VFD550CP23A-00/-		75	100	045	200	050	0.07	0.050	0 117	0.000	Vaa											
21	55	75	180	215	288	258	0.07	0.059	0.117	0.098	res	DR 180AP070	DKZISAPUSY									
VFD750CP23A-00/-		100	045	070	0.1.1	004.0	0.050	0.040	0.000	0.000	X											
21	75	100	215	276	344	331.2	0.059	0.049	0.098	0.082	Yes	DK215AP059	DRZ/6AP049									
VFD900CP23A-00/-	90 12	00	00	00	00	00	00	00	00 4	0 405	405			400	000.4	0.040	0.007	0.000		N		
21		125	255	322	408	386.4	0.049	0.037	0.082	0.062	res	DK2/0AP049	DR346AP037									

380V~460V/ 50~60Hz

Model	kW	HP	Rated Amps of AC Reactor (Arms)		Ma contin Amps (X. UOUS Arms)	3% Imped (ml	ն ance ⊣)	5 Impeo (m	% dance H)	Built-in	3 Input A0 Delta	% C reactor part #
lineder			Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty	reactor	Normal Duty	Light Duty
VFD007CP43A-21/4EA-21	0.75	1	2.8	3	4.48	3.6	9.058	8.102	15.097	13.503	No	DR003A0810*1	DR003A0810
VFD015CP43B-21/4EB-21	1.5	2	3	4.2	4.8	5.04	8.102	6.077	13.503	10.128	No	DR003A0810	DR004A0607
VFD022CP43B-21/4EB-21	2.2	3	4	5.5	6.4	6.6	6.077	4.05	10.128	6.75	No	DR004A0607	DR006A0405
VFD040CP43A-21/4EA-21	3.7	5	6	8.5	9.6	10.2	4.05	2.7	6.75	4.5	No	DR006A0405	DR009A0270
VFD037CP43B-21/4EB-21	4	5	9	10.5	14.4	12.6	2.7	2.315	4.5	3.858	No	DR009A0270	DR010A0231
VFD055CP43B-21/4EB-21	5.5	7.5	10.5	13	16.8	15.6	2.315	2.025	3.858	3.375	No	DR010A0231	DR012A0202
VFD075CP43B-21/4EB-21	7.5	10	12	18	19.2	21.6	2.025	1.35	3.375	2.25	No	DR012A0202	DR018A0117
VFD110CP43B-21/4EB-21	11	15	18	24	28.8	28.8	1.35	1.01	2.25	1.683	No	DR018A0117	DR024AP881
VFD150CP43B-21/4EB-21	15	20	24	32	38.4	38.4	1.01	0.76	1.683	1.267	No	DR024AP881	DR032AP660
VFD185CP43B-21/4EB-21	18.5	25	32	38	51.2	45.6	0.76	0.639	1.267	1.065	No	DR032AP660	DR038AP639
VFD220CP43A-21/4EA-21	22	30	38	45	60.8	54	0.639	0.541	1.065	0.902	No	DR038AP639	DR045AP541
VFD300CP43B-21/4EB-21	30	40	45	60	72	72	0.541	0.405	0.902	0.675	No	DR045AP541	DR060AP405
VFD370CP43B-21/4EB-21	37	50	60	73	96	87.6	0.405	0.334	0.675	0.557	No	DR060AP405	DR073AP334
VFD450CP43S-00/43S-21	45	60	73	91	116.8	109.2	0.334	0.267	0.557	0.445	Yes	DR073AP334	DR091AP267
VFD550CP43S-00/43S-21	55	75	91	110	145.6	132	0.267	0.221	0.445	0.368	Yes	DR091AP267	DR110AP221
VFD750CP43B-00/43B-21	75	100	110	150	176	180	0.221	0.162	0.368	0.27	Yes	DR110AP221	DR150AP162
VFD900CP43A-00/43A-21	90	125	150	180	240	216	0.162	0.135	0.27	0.225	Yes	DR150AP162	DR180AP135
VFD1100CP43A-00/43A-21	110	150	180	220	288	264	0.135	0.11	0.225	0.183	Yes	DR180AP135	DR220AP110
VFD1320CP43B-00/43B-21	132	175	220	260	352	312	0.11	0.098	0.183	0.163	Yes	DR220AP110	DR260AP098
VFD1600CP43A-00/43A-21	160	215	260	310	416	372	0.098	0.078	0.163	0.13	Yes	DR260AP098	DR310AP078
VFD1850CP43B-00/43B-21	185	250	310	370	496	444	0.078	0.066	0.13	0.11	Yes	DR310AP078	DR370AP066
VFD2200CP43A-00/43A-21	220	300	370	460	592	552	0.066	0.054	0.11	0.09	Yes	DR370AP066	DR460AP054
VFD2800CP43A-00/43A-21	280	375	460	530	736	636	0.054	0.044	0.09	0.073	Yes	DR460AP054	DR550AP044
VFD3150CP43A-00/43C-00 / VFD3150CP43A-21	315	420	550	616	880	739.2	0.044	0.039	0.073	0.065	Yes	DR550AP044	DR616AP039
VFD3550CP43A-00/43C-00 / VFD3550CP43A-21	355	475	616	683	985.6	819.6	0.039	0.036	0.065	0.06	Yes	DR616AP039	DR683AP036
VFD4000CP43A-00/43C-00 / VFD4000CP43A-21	400	536	683	770	1092.8	924	0.036	0.028	0.06	0.047	Yes	DR683AP036	DR866AP028
VFD5000CP43A-00/43C-00 / VFD5000CP43A-21	500	675	866	912	1385.6	1094.4	0.028	0.028	0.047	0.047	Yes	DR866AP028	DR866AP028*2
*Note 1: Use with DR003A08	310, bi	ut the	inductance	e value v	vill be 3%	short.							

*Note 2: Use with DR866AP028, the value is 5.3% greater than the rated current, which may cause slightly over-heat.

575 V, 50/60 Hz, 3-phase

	Model kW HP		Rated Amps of (Arm	AC Reactor	Max continuous	3% Imped	ance (mH)	5% Impedance (mH)		
Model		Normal Duty	Light Duty	Amps (Arms)	Normal Duty	Light Duty	Normal Duty	Light Duty		
015	1.5	2	2.5	3	4.2	10.567	8.806	17.612	14.677	
022	2.2	3	3.6	4.3	5.9	7.338	6.144	12.230	10.239	
037	3.7	5	5.5	6.7	9.1	4.803	3.943	8.005	6.572	
055	5.5	7.5	8.2	9.9	13.7	3.222	2.668	5.369	4.447	
075	7.5	10	10	12.1	16.5	2.642	2.183	4.403	3.639	
110	11	15	15.5	18.7	25.7	1.704	1.413	2.841	2.355	
150	15	20	20	24.2	33.3	1.321	1.092	2.201	1.819	

690V, 50/60 Hz, 3-phase

Model	kW	HP	Rated Amps of AC Reactor (Arms)		Max. continuous Amps (Arms)		3% Impedance (mH)		5% Impedance (mH)	
			Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty
185	18.5	25	20	24	30.0	28.8	1.902	1.585	3.170	2.642
220	22	30	24	30	36.0	36.0	1.585	1.268	2.642	2.113
300	30	40	30	36	45.0	43.2	1.268	1.057	2.113	1.761
370	37	50	36	45	54.0	54.0	1.057	0.845	1.761	1.409
450	45	60	45	54	67.5	64.8	0.845	0.704	1.409	1.174
550	55	75	54	67	81.0	80.4	0.704	0.568	1.174	0.946
750	75	100	67	86	100.5	103.2	0.568	0.442	0.946	0.737
900	90	125	86	104	129.0	124.8	0.442	0.366	0.737	0.610
1100	110	150	104	125	156.0	150.0	0.366	0.304	0.610	0.507
1320	132	175	125	150	187.5	180.0	0.304	0.254	0.507	0.423
1600	160	215	150	180	225.0	216.0	0.254	0.211	0.423	0.352
2000	200	270	180	220	270.0	264.0	0.211	0.173	0.352	0.288
2500	250	335	220	290	330.0	348.0	0.173	0.131	0.288	0.219
3150	315	425	290	350	435.0	420.0	0.131	0.109	0.219	0.181
4000	400	530	350	430	525.0	516.0	0.109	0.088	0.181	0.147
4500	450	600	385	465	577.5	558.0	0.099	0.082	0.165	0.136
5600	560	745	465	590	697.5	708.0	0.082	0.064	0.136	0.107
6300	630	850	675	675	1012.5	810.0	0.056	0.056	0.094	0.094

AC input reactor dimension and specification:

Tightening torque: 6.1~8.2 kg-cm / [5.3~7.1 lb-in.] / [0.6~0.8 Nm]

Unit: mm

Input AC reactor Delta part #	А	В	С	D1*D2	E	G1	G2	PE D
DR005A0254	96	100	60	6*9	42	60	40	M4
DR008A0159	120	120	88	6*12	60	80.5	60	M4
DR011A0115	120	120	88	6*12	60	80.5	60	M4
DR017AP746	120	120	93	6*12	65	80.5	60	M4
DR025AP507	150	150	112	6*12	88	107	75	M4
DR033AP320	150	150	112	6 [*] 12	88	107	75	M4

Unit: mm

Input AC reactor Delta part #	А	В	С	D1*D2	н	G	G1	Q	М	PE D
DR049AP215	180	195	160	6*12	115	85	122	16	1.2~1.4	M4
DR065AP163	180	205	160	6*12	115	85	122	35	2.5~3.0	M4

			_			_							
Delta part #													
DR075AP170	240	220	205	42	165	151	95	7*13	152	176	85	20*3	M8
DR090AP141	240	225	210	44	170	151	95	7*13	152	176	85	20*3	M8
DR146AP087	240	225	240	44	200	163	100	7*13	152	176	97	20*3	M8
DR180AP070	250	235	250	49	206	175	105	11*18	160	190	124	30*3	M8
DR215AP059	250	235	275	51	226	180	110	11*18	160	190	124	30*5	M8

Unit: mm

Input AC reactor Delta part #	A	A1	В	B1	B2	С	C1	D1*D2	E	G1	н	M*T	PE
DR276AP049	270	255	310	50	265	200	130	10*18	176	200	106	30*5	M8
DR349AP037	270	260	333	50	285	200	130	10*18	176	200	106	30*5	M8

Tightening torque: 10.2~12.3 kg-cm / [8.9~10.6 lb-in.] / [1.0~1.2 Nm]

Tightening torque: 6.1~8.2 kg-cm / [5.3~7.1 lb-in.] / [0.6~0.8 Nm]

Input AC reactor Delta part #	А	В	С	D1*D2	E	G1	G2	PE D
DR003A0810	96	100	60	6*9	42	60	40	M4
DR004A0607	120	120	88	6*12	60	80.5	60	M4
DR006A0405	120	120	88	6*12	60	80.5	60	M4
DR009A0270	150	150	88	6*12	74	107	75	M4
DR010A0231	150	150	112	6*12	88	107	75	M4
DR012A0202	150	150	112	6*12	88	107	75	M4
DR018A0117	150	155	112	6*12	88	107	75	M4
DR024AP881	150	155	112	6*12	88	107	75	M4
DR032AP660	180	175	138	6*12	114	122	85	M6

Unit: mm

Input AC reactor Delta part #	А	В	С	D1*D2	н	G	G1	Q	М	PE D
DR038AP639	180	195	160	6*12	115	85	122	16	1.2~1.4	M4
DR045AP541	235	235	145	7*13	85	/	176	16	1.2~1.4	M6

												I	Unit: mm
Input AC reactor Delta part #	А	A1	В	B1	B2	С	C1	D1*D2	Е	G1	Н	M*T	PE
DR060AP405	240	225	210	44	170	163	100	7*13	152	176	97	20*3	M8
DR073AP334	250	230	225	44	186	174	105	11*18	160	190	124	20*3	M8
DR091AP267	250	235	225	44	186	174	105	11*18	160	190	124	20*3	M8
DR110AP221	270	255	235	50	192	175	105	10*18	176	200	106	20*3	M8

7-21

Unit: mm

Input AC reactor Delta part #	A	A1	В	B1	B2	С	C1	D1*D2	Е	G1	G2	н	M*T
DR150AP162	270	260	260	51	208	195	120	10*18	176	200	/	118	30*3
DR180AP135	300	290	300	55	246	195	115	11*22	200	230	190	142	30*3
DR220AP110	300	295	300	57	248	210	130	11*22	200	230	190	142	30*5
DR260AP098	300	290	330	56	270	227	140	11*22	200	230	190	160	30*5
DR310AP078	300	295	340	54	288	233	145	11*22	200	230	190	160	30*5
DR370AP066	300	295	340	54	289	268	168	11*22	200	230	190	185	40*3

U	In	it	m	۱m
0		· · · ·		

Input AC reactor Delta part #	А	A1	В	B1	B2	С	C1	D1*D2	Е	G1	Н	M*T	PE
DR460AP054	360	350	490	106	401	346	205	12*20	240	240	240	50*5	M8
DR550AP044	360	350	490	106	401	358	210	12*20	240	240	250	50*5	M8
DR616AP039	360	350	490	110	401	376	225	12*20	240	240	270	50*8	M8
DR683AP036	360	350	490	110	404	396	232	12*20	240	240	290	50*8	M8
DR866AP028	410	415	562	120	464	402	232	12*20	280	280	290	50*8	M8

DC Reactor

DC reactor can also increase line impedance, improve power factor, reduce input current, increase system capacity and reduce interference generated from motor drive. In addition, DC reactor can stabilize DC side voltage of motor drive. In contrast to AC input reactor, the advantages are smaller size, lower price and lower voltage drop (lower power dissipation)

Installation

DC reactor is installed in the terminal +2/DC+ and +1/DC+. The jumper needs to be removed before installation, which is shown as below:

Wiring of DC reactor

Specifications of DC reactors (standard item)

The following table shows the specifications of DC reactors (standard items) for Delta CP2000 series products.

Model	Nodel kW HP		Rated Amps of DC Reactor [Arms]		Max. co Amps	ntinuous [Arms]	DC imp [r	oedance nH]	DC Reactor Delta part #			
			Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty		
007	0.75	1	4.6	5	7.36	6	6.366	5.857	DR005D0585*	DR005D0585		
015	1.5	2	5	7.5	8	9	5.857	3.66	DR005D0585	DR008D0366		
022	2.2	3	8	10	12.8	12	3.66	2.662	DR008D0366	DR011D0266		
037	3.7	5	11	15	17.6	18	2.662	1.722	DR011D0266	DR017D0172		
055	5.5	7.5	17	21	27.2	25.2	1.722	1.172	DR017D0172	DR025D0117		
075	7.5	10	25	31	40	37.2	1.172	0.851	DR025D0117	DR033DP851		
110	11	15	33	46	52.8	55.2	0.851	0.574	DR033DP851	DR049DP574		
150	15	20	49	61	78.4	73.2	0.574	0.432	DR049DP574	DR065DP432		

Model	kW	HP	Rated A DC Re [Arm	mps of actor າs]	Max. coi Amps	ntinuous [Arms]	DC imj [i	oedance mH]	DC R Delta	eactor part #
			Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty
185	18.5	25	65	75	104	90	0.432	0.391	DR065DP432	DR075DP391
220	22	30	75	90	120	108	0.391	0.325	DR075DP391	DR090DP325
300	30	40	90	105	144	126	0.325	0.244	DR090DP325	N/A
*Note 1:	Use with	DR0 ו	05D0585, b	out the in	ductance v	alue will be	e 3% short.			

380V~460V/ 50~60Hz

Model	kW	HP	Rated A DC Re [Arn	mps of actor ns]	Max. co Amps	ntinuous [Arms]	DC imj [I	pedance mH]	DC Re Delta	eactor part #
			Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty
007	0.75	1	2.8	3	4.48	3.6	18.709	18.709	DR003D1870	DR003D1870
015	1.5	2	3	4.2	4.8	5.04	18.709	14.031	DR003D1870	DR004D1403
022	2.2	3	4	5.5	6.4	6.6	14.031	9.355	DR004D1403	DR006D0935
037	3.7	5	6	8.5	9.6	10.2	9.355	6.236	DR006D0935	DR009D0623
040	4	5	9	10.5	14.4	12.6	6.236	5.345	DR009D0623	DR010D0534
055	5.5	7.5	10.5	13	16.8	15.6	5.345	4.677	DR010D0534	DR012D0467
075	7.5	10	12	18	19.2	21.6	4.677	3.119	DR012D0467	DR018D0311
110	11	15	18	24	28.8	28.8	3.119	2.338	DR018D0311	DR024D0233
150	15	20	24	32	38.4	38.4	2.338	1.754	DR024D0233	DR032D0175
185	18.5	25	32	38	51.2	45.6	1.754	1.477	DR032D0175	DR038D0147
220	22	30	38	45	60.8	54	1.477	1.247	DR038D0147	DR045D0124
300	30	40	45	60	72	72	1.247	0.935	DR045D0124	DR060DP935
370	37	50	60	73	96	87.6	0.935	0.768	DR060DP935	N/A
*Note 1:	Use with	DR00)3D1870, b	out the in	ductance v	alue will be	3% short.			

DC reactor dimension and specification:

DC reactor	А	В	С	D	E	Dimonsions [mm]
Delta part #	[mm)	[mm]	[mm]	[mm]	[mm]	
DR005D0585	79	78	107	64	59	9.5*5.5
DR008D0366	79	82	107	63.5	63.5	9.5*5.5
DR011D0266	99	96	128	80	72.5	9*6
DR017D0172	99	102	128	80	80	9*6
DR025D0117	117	107	154	95	86	12*8
DR033DP851	117	113	154	95	92	12*8
DR049DP574	136	123	170	111	100	12*8
DR065DP432	136	133	170	111	110	12*8
DR075DP391	153	150	191	125	127	12*8
DR090DP325	153	154	191	125	131	12*8
DR003D1870	79	82	107	63.5	64	9.5*5.5
DR004D1403	79	87	107	63.5	68.5	9.5*5.5
DR006D0935	99	92	128	80	68.5	9*6
DR009D0623	99	104	128	80	81.5	9*6
DR010D0534	99	108	128	80	85	9*6
DR012D0467	99	119	128	80	96	9*6
DR018D0311	117	127	142	95	106	12*8
DR024D0233	117	134	143	95	113	12*8
DR032D0175	136	131	170	111	108	12*8
DR038D0147	153	143	186	125	120	12*8
DR045D0124	153	149	186	125	126	12*8

AC motor drive	Without adding	Without built	-in DC reactor	(Frame A~C)	With built-ir (Frame D	DC reactor and above)
Spec. of reactor	input AC/DC	3% Input	5% Input	4%	3% Input	5% Input
(series-connected)	reactor	AC Reactor	AC Reactor	DC Reactor	AC Reactor	AC Reactor
5 th	73.3%	38.5%	30.8%	25.5%	27.01%	25.5%
7 th	52.74%	15.3%	9.4%	18.6%	9.54%	8.75%
11 th	7.28%	7.1%	6.13%	7.14%	4.5%	4.2%
13 th	0.4%	3.75%	3.15%	0.48%	0.22%	0.17%
THDi	91%	43.6%	34.33%	38.2%	30.5%	28.4%
Note:	THDi may have	e some differe	nce due to diffe	erent installatio	n conditions a	nd
Note.			environment	í.		

	The follow	ving table is a	spec. of THD	i that Delta AC	c motor drives	use with AC/DC	reactors
--	------------	-----------------	--------------	-----------------	----------------	----------------	----------

AC Output Reactor

If the length of cable between AC motor drive and motor is too long, it may make AC motor drive trigger protection mechanism for GF (Ground Fault), OC (Over Current) and the AC motor drive stops running. The cause is the over long motor cable will generate extremely large stray capacitance, make common mode current of 3-phase output get too large and then trigger GF protection mechanism; OC protection is triggered which is caused by stray capacitance of cable-cable and cable-ground are getting larger, and its surge current makes AC motor drive output over large current. To prevent from the common mode current that stray capacitance generates, set up AC output reactor between AC motor drive and motor to increase the high frequency impedance.

Power transistor is switched via PWM to control the output voltage and frequency for AC motor drive. During the switch process, impulse voltage (dv/dt) rises and falls rapidly will make inner voltage of motor distribute unequally, and then the isolation of motor will be getting worse, and have interference of bearing current and electromagnet. Especially when AC motor drive and motor are connected by long leading wire, the influence of damping of high frequency resonance and reflected voltage that caused by cable spreading parameters is getting large, and it will generate twice incoming voltage at motor side to be over voltage, destroy the isolation.

Installation

AC output reactor is serially connected between motor drive UVW output side and motor, which is shown as below:

Wiring of AC output reactor

Specifications of AC output reactors (standard item)

The following table shows the specifications of AC output reactors (standard items) for Delta CP2000 series products, and their part numbers to choose:

200V~230V/ 50~60Hz

Model	kW	HP	Rated / of AC R (Arm	Amps eactor ns)	Max. co Amps	ntinuous (Arms)	3% Imp (n	bedance hH)	5% Imp (m	edance H)	Built-in DC	3% Input / Delta	AC reactor part #
			Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty	reactor	Normal Duty	Light Duty
007	0.75	1	4.6	5	7.36	6	2.536	2.536	4.227	4.227	No	DR005L0254	DR005L0254
015	1.5	2	5	7.5	8	9	2.536	1.585	4.227	2.642	No	DR005L0254	DR008L0159
022	2.2	3	8	10	12.8	12	1.585	1.152	2.642	1.92	No	DR008L0159	DR011L0115
037	3.7	5	11	15	17.6	18	1.152	0.746	1.92	1.243	No	DR011L0115	DR017LP746
055	5.5	7.5	17	21	27.2	25.2	0.746	0.507	1.243	0.845	No	DR017LP746	DR025LP507
075	7.5	10	25	31	40	37.2	0.507	0.38	0.845	0.633	No	DR025LP507	DR033LP320
110	11	15	33	46	52.8	55.2	0.38	0.26	0.633	0.433	No	DR033LP320	DR049LP215
150	15	20	49	61	78.4	73.2	0.26	0.196	0.433	0.327	No	DR049LP215	DR065LP162
185	18.5	25	65	75	104	90	0.196	0.169	0.327	0.282	No	DR065LP162	DR075LP170
220	22	30	75	90	120	108	0.169	0.141	0.282	0.235	No	DR075LP170	DR090LP141
300	30	40	90	105	144	126	0.141	0.12	0.235	0.2	No	DR090LP141	DR105LP106
370	37	50	120	146	192	175.2	0.12	0.087	0.2	0.145	Yes	DR105LP106	DR146LP087
450	45	60	146	180	233.6	216	0.087	0.07	0.145	0.117	Yes	DR146LP087	DR180LP070
550	55	75	180	215	288	258	0.07	0.059	0.117	0.098	Yes	DR180LP070	DR215LP059
750	75	100	215	276	344	331.2	0.059	0.049	0.098	0.082	Yes	DR215LP059	DR276LP049
900	90	125	255	322	408	386.4	0.049	0.037	0.082	0.062	Yes	DR276LP049	DR346LP037

380V~460V/ 50~60Hz

Model	kW	HP	Rated of AC R (Arr	Amps Reactor ns)	Max. co Amps	ntinuous (Arms)	3% imped (mH)	ance	5% imp (m	edance H)	Built-in DC	3% Input Delta	AC reactor part #
			Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty	reactor	Normal Duty	Light Duty
007	0.75	1	2.8	3	4.48	3.6	9.058	8.102	15.097	13.503	No	DR003L0810*1	DR003L0810
015	1.5	2	3	4.2	4.8	5.04	8.102	6.077	13.503	10.128	No	DR003L0810	DR004L0607
022	2.2	3	4	5.5	6.4	6.6	6.077	4.050	10.128	6.75	No	DR004L0607	DR006L0405
037	3.7	5	6	8.5	9.6	10.2	4.050	2.700	6.75	4.5	No	DR006L0405	DR009L0270
040	4	5	9	10.5	14.4	12.6	2.700	2.315	4.5	3.858	No	DR009L0270	DR010L0231
055	5.5	7.5	10.5	13	16.8	15.6	2.315	2.025	3.858	3.375	No	DR010L0231	DR012L0202
075	7.5	10	12	18	19.2	21.6	2.025	1.35	3.375	2.25	No	DR012L0202	DR018L0117
110	11	15	18	24	28.8	28.8	1.35	1.01	2.25	1.683	No	DR018L0117	DR024LP881
150	15	20	24	32	38.4	38.4	1.01	0.76	1.683	1.267	No	DR024LP881	DR032LP660
185	18.5	25	32	38	51.2	45.6	0.76	0.639	1.267	1.065	No	DR032LP660	DR038LP639
220	22	30	38	45	60.8	54	0.639	0.541	1.065	0.902	No	DR038LP639	DR045LP541
300	30	40	45	60	72	72	0.541	0.405	0.902	0.675	No	DR045LP541	DR060LP405
370	37	50	60	73	96	87.6	0.405	0.334	0.675	0.557	No	DR060LP405	DR073LP334
450	45	60	73	91	116.8	109.2	0.334	0.267	0.557	0.445	Yes	DR073LP334	DR091LP267
550	55	75	91	110	145.6	132	0.267	0.221	0.445	0.368	Yes	DR091LP267	DR110LP221
750	75	100	110	150	176	180	0.221	0.162	0.368	0.27	Yes	DR110LP221	DR150LP162

Model	kW	HP	Rated of AC R (Arr	Amps leactor ns)	Max. co Amps	ntinuous (Arms)	3% imped (mH)	lance	5% imp (m	edance IH)	Built-in DC	3% Input Delta	AC reactor part #
			Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty	Normal Duty	Light Duty	reactor	Normal Duty	Light Duty
900	90	125	150	180	240	216	0.162	0.135	0.27	0.225	Yes	DR150LP162	DR180LP135
1100	110	150	180	220	288	264	0.135	0.110	0.225	0.183	Yes	DR180LP135	DR220LP110
1320	132	175	220	260	352	312	0.110	0.098	0.183	0.163	Yes	DR220LP110	DR260LP098
1600	160	215	260	310	416	372	0.098	0.078	0.163	0.13	Yes	DR260LP098	DR310LP078
1850	185	250	310	370	496	444	0.078	0.066	0.13	0.11	Yes	DR310LP078	DR370LP066
2200	220	300	370	460	592	552	0.066	0.054	0.11	0.09	Yes	DR370LP066	DR460LP054
2800	280	375	460	530	736	636	0.054	0.044	0.09	0.073	Yes	DR460LP054	DR550LP044
3150	315	420	550	616	880	739.2	0.044	0.039	0.073	0.065	Yes	DR550LP044	DR616LP039
3550	355	475	616	683	985.6	819.6	0.039	0.036	0.065	0.06	Yes	DR616LP039	DR683LP036
4500	450	600	683	770	1092.8	924	0.036	0.028	0.06	0.047	Yes	DR683LP036	DR866LP028
5000	5000 500 675 866 912 1385.6 1094.4 0.028 0.028 0.047 0.047 Yes DR866LP028 DR866LP028*2												
*Note 1	*Note 1: Use with DR003A0810, but the inductance value will be 3% short.												
*Note 2	: Use	with D	R866AP	028, the	value is 5.3	3% greater	than the rated	current, v	which may	cause sligł	ntly over-h	eat.	

575V/ 50~60Hz, 3-phase

Model kW H		ЦП	Rated A AC React	Amps of tor (Arms)	Max. continuous	3% imped	ance (mH)	5% impedance (mH)		
woder	ĸvv	пР	Normal Duty	Light Duty	Amps (Arms)	Normal Duty	Light Duty	Normal Duty	Light Duty	
015	1.5	2	2.5	3	4.2	10.567	8.806	17.612	14.677	
022	2.2	3	3.6	4.3	5.9	7.338	6.144	12.230	10.239	
037	3.7	5	5.5	6.7	9.1	4.803	3.943	8.005	6.572	
055	5.5	7.5	8.2	9.9	13.7	3.222	2.668	5.369	4.447	
075	7.5	10	10	12.1	16.5	2.642	2.183	4.403	3.639	
110	11	15	15.5	18.7	25.7	1.704	1.413	2.841	2.355	
150	15	20	20	24.2	33.3	1.321	1.092	2.201	1.819	

690V/ 50~60Hz, 3-phase

Model	kW	HP	Rated A AC React	Amps of or (Arms)	Max. cor Amps	ntinuous (Arms)	3% imped	ance (mH)	5% imped	ance (mH)
			ND*	LD*	ND	ĹD	ND	LD	ND	LD
185	18.5	25	20	24	30.0	28.8	1.902	1.585	3.170	2.642
220	22	30	24	30	36.0	36.0	1.585	1.268	2.642	2.113
300	30	40	30	36	45.0	43.2	1.268	1.057	2.113	1.761
370	37	50	36	45	54.0	54.0	1.057	0.845	1.761	1.409
450	45	60	45	54	67.5	64.8	0.845	0.704	1.409	1.174
550	55	75	54	67	81.0	80.4	0.704	0.568	1.174	0.946
750	75	100	67	86	100.5	103.2	0.568	0.442	0.946	0.737
900	90	125	86	104	129.0	124.8	0.442	0.366	0.737	0.610
1100	110	150	104	125	156.0	150.0	0.366	0.304	0.610	0.507
1320	132	175	125	150	187.5	180.0	0.304	0.254	0.507	0.423
1600	160	215	150	180	225.0	216.0	0.254	0.211	0.423	0.352
2000	200	270	180	220	270.0	264.0	0.211	0.173	0.352	0.288
2500	250	335	220	290	330.0	348.0	0.173	0.131	0.288	0.219

Model	kW	kW HP A		Rated Amps of AC Reactor (Arms)		ntinuous (Arms)	3% imped	ance (mH)	5% impedance (mH)		
			ND*	LD*	ND	ĹD	ND	LD	ND	LD	
3150	315	425	290	350	435.0	420.0	0.131	0.109	0.219	0.181	
4000	400	530	350	430	525.0	516.0	0.109	0.088	0.181	0.147	
4500	450	600	385	465	577.5	558.0	0.099	0.082	0.165	0.136	
5600	560	745	465	590	697.5	708.0	0.082	0.064	0.136	0.107	
6300	630	850	675	675	1012.5	810.0	0.056	0.056	0.094	0.094	

* LD: Light Duty; ND: Normal Duty; HD: Heavy Duty

Motor Cable Length

1. Leakage current to affect the motor and counter measurement

If the cable length is too long, the parasitic capacitance between cables will enlarge and may increase leakage current. It will activate the protection of over current, and increased leakage current will not ensure the correction of current value in display. The worst case is that AC motor drive may damage.

If more than one motor is connected to the AC motor drive, the total wiring length is the sum of the wiring length from AC motor drive to each motor.

For the 460V series AC motor drive, when an overload relay is installed between the drive and the motor to protect motor from overheating, the connecting cable must be shorter than 50m. However, an overload relay malfunction may still occur. To prevent the malfunction, install an output reactor (optional) to the drive or lower the carrier frequency setting (Pr. 00-17).

2. Surge voltage to affect the motor and counter measurement

When motor is driven by a PWM signal of AC motor drive, the motor terminals will experience surge voltages (dv/dt) easily due to power transistors conversion of AC motor drive and cable capacitance. When the motor cable is very long (especially for the 460V series), surge voltages (dv/dt) may reduce insulation quality. To prevent this situation, please follow the rules below:

- a. Use a motor with enhanced insulation
- b. Connect an output reactor (optional) to the output terminals of the AC motor drive
- c. Reduce the motor cable length to suggested value

The suggested motor shielded cable length in the following table complies with IEC 60034-17, which is suitable for the motor with rated voltage under 500 VAC, and the insulation level of peak-to-peak over (including) 1.35kV

230V		ПП	Rated curren (Arms)		Without A	C output reactor	3% With AC output reactor			
Model	ĸvv		Normal Duty	Light Duty	Shielded Cable [meter)	Non-shielded cable [meter]	Shielded Cable [meter]	Non-shielded cable [meter]		
007	0.75	1	4.6	5	50	75	75	115		
015	1.5	2	5	7.5	50	75	75	115		
022	2.2	3	8	10	50	75	75	115		
037	3.7	5	11	15	50	75	75	115		
040	4	5	17	21	50	75	75	115		

230V	230V Model kW I		Rated current (Arms)		Without A	C output reactor	3% With AC output reactor		
Model			Normal Light Duty Duty		Shielded Cable [meter)	Non-shielded cable [meter]	Shielded Cable [meter]	Non-shielded cable [meter]	
055	5.5	7.5	25	31	100	150	150	225	
075	7.5	10	33	46	100	150	150	225	
150	15	20	49	61	100	150	150	225	
185	18.5	25	65	75	100	150	150	225	
220	22	30	75	90	100	150	150	225	
300	30	40	90	120	100	150	150	225	
370	37	50	120	146	100	150	150	225	
450	45	60	146	180	150	225	225	325	
550	55	75	180	215	150	225	225	325	
750	75	100	215	276	150	225	225	325	
900	90	125	255	322	150	225	225	325	

460V		ЦΠ	Rated c (Arm	urrent is)	Without AC	output reactor	3% With AC output reactor		
Model	ĸvv	пР	Normal Duty	Light Duty	Shielded Cable [meter]	Non-shielded cable [meter]	Shielded Cable [meter]	Non-shielded cable [meter]	
007	0.75	1	1.7	3	50	75	75	115	
015	1.5	2	3	4.2	50	75	75	115	
022	2.2	3	4	5.5	50	75	75	115	
037	3.7	5	6	8.5	50	75	75	115	
040	4	5	9	10.5	50	75	75	115	
055	5.5	7.5	10.5	13	50	75	75	115	
075	7.5	10	12	18	100	150	150	225	
110	11	15	18	24	100	150	150	225	
150	15	20	24	32	100	150	150	225	
185	18.5	25	32	38	100	150	150	225	
220	22	30	38	45	100	150	150	225	
300	30	40	45	60	100	150	150	225	
370	37	50	60	73	100	150	150	225	
450	45	60	73	91	150	225	225	325	
550	55	75	91	110	150	225	225	325	
750	75	100	110	150	150	225	225	325	
900	90	125	150	180	150	225	225	325	
1100	110	150	180	220	150	225	225	325	
1320	132	175	220	260	150	225	225	325	
1600	160	215	260	310	150	225	225	325	
1850	185	250	310	370	150	225	225	325	
2200	220	300	370	460	150	225	225	325	
2800	280	375	460	530	150	225	225	325	
3150	315	420	550	616	150	225	225	325	
3550	355	475	616	683	150	225	225	325	
4000	400	536	683	770	150	225	225	325	
5000	500	675	866	912	150	225	225	325	

575V			Rated current	Without AC c	output reactor	3% With AC output reactor		
Model	kW	ΗP	(Arms) Normal Duty	Shielded Cable [meter]	Non-shielded cable [meter]	Shielded Cable [meter]	Non-shielded cable [meter]	
VFD022CP53A-21	1.5	2	3.6	35	30	45	20	
VFD037CP53A-21	2.2	3	5.5	35	30	45	20	
VFD055CP53A-21	3.7	5	8.2	35	30	45	20	
VFD075CP53A-21	5.5	7.5	10	35	30	45	20	
VFD110CP53A-21	7.5	10	15.5	35	30	45	20	
VFD150CP53A-21	11	15	20	35	30	45	20	

			Rated current	Without AC o	utput reactor	With AC output reactor		
690V Model	kW	HP	(Arms)	Shielded Cable	Non-shielded	Shielded	Non-shielded	
	Normal Duty		[meter]	cable [meter]	Cable [meter]	cable [meter]		
VFD185CP63A-21	18.5	25	20	20	35	30	45	
VFD220CP63A-21	22	30	24	20	35	30	45	
VFD300CP63A-21	30	40	30	20	35	45	60	
VFD370CP63A-21	37	50	36	20	45	60	75	
VFD450CP63A-00/21	45	60	45	20	45	60	75	
VFD550CP63A-00/21	55	75	54	20	45	60	100	
VFD750CP63A-00/21	75	100	67	20	45	60	100	
VFD900CP63A-00/21	90	125	86	20	45	75	100	
VFD1100CP63A-00/21	110	150	104	20	45	75	100	
VFD1320CP63A-00/21	132	175	125	20	45	75	100	
VFD1600CP63A-00/21	160	215	150	20	45	90	100	
VFD2000CP63A-00/21	200	270	180	20	45	90	100	
VFD2500CP63A-00/21	250	335	220	20	45	90	100	
VFD3150CP63A-00/21	315	425	290	20	45	90	100	
VFD4000CP63A-00/21	400	530	350	20	45	90	100	
VFD4500CP63A-00/21	450	600	385	20	45	90	100	
VFD5600CP63A-00/21	560	745	465	20	45	75	90	
VFD6300CP63A-00/21	630	850	675	20	45	75	90	

% $\,$ 690V output motor cable length needs to comply with IEC 60034-25.

Requirements on insulation level of Curve B motor

Key

A Without filters for motors up to 500 V a.c.

B Without filters for motors up to 690 V a.c.

 * Examples of measured results at 415 V supply, for different lengths of steel armoured cable

The tr is defined as:

Sine-wave filter

When there is longer cable length connected between motor drive and motor, the damping will lead to high frequency resonator, and make impedance matching poor to enlarge the voltage reflection. This phenomenon will generate twice input voltage in motor side, which will easily make motor voltage overshoot to damage insulation.

To prevent this phenomenon, installing sine-wave filter can transform PWM output voltage to smooth and low-ripple sin wave, and motor cable length can be longer than 1000 meters.

Installation

Sine-wave filter is serially connected between motor drive UVW output side and motor, which is shown as below:

Wiring of non-shielded cable

Wiring of shielded cable

Following table shows the sine-wave filter specification of Delta CP2000 200V~230V / 50~60Hz

230V	kW	HP	Rated curr Normal	ent (Arms) Light	Suggested sine-wave filter	Output cable length
Model			Duty	Duty	part #	(Shielded of non-shielded)
7	0.75	1	4.6	5	B84143V0006R227	1000
15	1.5	2	5	7.5	B84143V0011R227	1000
22	2.2	3	8	10	B84143V0011R227	1000
37	3.7	5	11	15	B84143V0025R227	1000
55	5.5	7.5	17	21	B84143V0025R227	1000
75	7.5	10	25	31	B84143V0033R227	1000
110	11	15	33	46	B84143V0050R227	1000
150	15	20	49	61	B84143V0066R227	1000
185	18.5	25	65	75	B84143V0075R227	1000
220	22	30	75	90	B84143V0095R227	1000
300	30	40	90	105	B84143V0132R227	1000
370	37	50	120	146	B84143V0180R227	1000
450	45	60	146	180	B84143V0180R227	1000
550	55	75	180	215	B84143V0250R227	1000
750	75	100	215	276	B84143V0320R227	1000
900	90	125	255	322	Non-available	1000

380V~460V / 50~60Hz

460V			Rated cu	ed current (Arms) Suggested sine-wave filter		Output cable length
Model	kW	HP	Normal Duty	Light Duty	part #	(Shielded or non-shielded)
007	0.75	1	2.8	3	B84143V0004R227	1000
015	1.5	2	3	4.2	B84143V0006R227	1000
022	2.2	3	4	5.5	B84143V0006R227	1000
037	3.7	5	6	8.5	B84143V0011R227	1000
040	4	5	9	10.5	B84143V0011R227	1000
055	5.5	7.5	10.5	13	B84143V0016R227	1000
075	7.5	10	12	18	B84143V0025R227	1000
110	11	15	18	24	B84143V0025R227	1000
150	15	20	24	32	B84143V0033R227	1000
185	18.5	25	32	38	B84143V0050R227	1000
220	22	30	38	45	B84143V0050R227	1000
300	30	40	45	60	B84143V0066R227	1000
370	37	50	60	73	B84143V0075R227	1000
450	45	60	73	91	B84143V0095R227	1000
550	55	75	91	110	B84143V0132R227	1000
750	75	100	110	150	B84143V0180R227	1000
900	90	125	150	180	B84143V0180R227	1000
1100	110	150	180	220	B84143V0250R227	1000
1320	132	175	220	260	B84143V0320R227	1000

p

460V	460V		Rated cu	urrent (Arms)	Suggested sine-wave filter	Output cable length	
Model	kW	HP	Normal Duty	Light Duty	part #	(Shielded or non-shielded)	
1600	160	215	260	310	B84143V0320R227	1000	
1850	185	250	310	370	Non-available	1000	
2200	220	300	370	460	Non-available	1000	
2800	280	375	460	530	Non-available	1000	
3150	315	420	550	616	Non-available	1000	
3550	355	475	616	683	Non-available	1000	
4000	400	536	683	770	Non-available	1000	
5000	500	675	866	912	Non-available	1000	

Sine-wave output filters	Click on this URL for more information http://en.tdk.eu/inf/30/db/emc_2014/B84143V_R227.pdf				
B84143V0004R227	I _R :4A, Sine-wave output filters for 3-phase systems				
B84143V0006R227	I _R :6A, Sine-wave output filters for 3-phase systems				
B84143V0011R227	I _R :11A, Sine-wave output filters for 3-phase systems				
B84143V0016R227	I _R :16A, Sine-wave output filters for 3-phase systems				
B84143V0025R227	I _R :25A, Sine-wave output filters for 3-phase systems				
B84143V0033R227	I _R :33A, Sine-wave output filters for 3-phase systems				
B84143V0050R227	I _R :50A, Sine-wave output filters for 3-phase systems				
B84143V0066R227	I _R :66A, Sine-wave output filters for 3-phase systems				
B84143V0075R227	I _R :75A, Sine-wave output filters for 3-phase systems				
B84143V0095R227	I _R :95A, Sine-wave output filters for 3-phase systems				
B84143V0132R227	I _R :132A, Sine-wave output filters for 3-phase systems				
B84143V0180R227	I _R :180A, Sine-wave output filters for 3-phase systems				
B84143V0250R227	I _R :250A, Sine-wave output filters for 3-phase systems				
B84143V0320R227	I _R :320A, Sine-wave output filters for 3-phase systems				

7-5 Zero Phase Reactors

UNIT: mm [inch]

model	Α	В	С	D	E	F	G[Ø]	Torque
RF008X00A	98 [3.858]	73 [2.874]	36.5 [1.437]	29 [1.142]	56.5 [2.224]	86 [3.386]	5.5 [0.217]	< 10kgf/cm ²
RF004X00A	110 [4.331]	87.5 [3.445]	43.5 [1.713]	36 [1.417]	53 [2.087]	96 [3.780]	5.5 [0.217]	< 10kgf/cm ²

UNIT: mm [inch]

model	Α	В	С	D	E	F	G[Ø]	Н	Torque
RF002X00A	200 [7.874]	172.5 [6.791]	90 [3.543]	78 [3.071]	55.5 [2.185]	184 [7.244]	5.5 [0.217]	22 [0.866]	<45kgf/cm ²

UNIT: mm [inch]

model	Α	В	С	D	Е	F	G[Ø]	Н	I
DESOUVOON	241	217[114	155	42	220	6.5	7.0	20
KF300X00A	[9.488]	8.543]	[4.488]	[6.102]	[1.654]	[8.661]	[0.256]	[0.276]	[0.787]

Reactor model (Note)	Recommen	ded Wire Size	Wiring Method	Qty	Corresponding motor drives
RF008X00A	≤8 AWG	≤ 8.37 mm²	Diagram A	1	VFD007CP23A-21; VFD007CP43A/4EA-21; VFD015CP23A-21; VFD015CP43B/4EB-21; VFD022CP23A-21; VFD022CP43B/4EB-21; VFD037CP23A-21; VFD037CP43B/4EB-21; VFD040CP43A/4EA-21; VFD055CP23A-21; VFD055CP43B/4EB-21; VFD075CP43B/4EB-21; VFD022CP53A-21; VFD037CP53A-21
RF004X00A	≤4 AWG	4 AWG ≤ 21.15 mm ²		1	VFD075CP23A-21; VFD110CP23A-21; VFD110CP43B/4EB -21; VFD150CP23A-21; VFD150CP43B/4EB -21; VFD185CP43B/4EB -21; VFD055CP53A-21; VFD075CP53A-21; VFD110CP53A-21; VFD150CP53A-21
RF002X00A	≤ 2 AWG	≤ 33.62 mm²	Diagram A	1	VFD185CP23A-21; VFD220CP23A-21; VFD220CP43A/4EA -21; VFD300CP23A-21; VFD300CP43B/4EB -21; VFD370CP43B/4EB -21; VFD185CP63A-21; VFD220CP63A-21; VFD300CP63A-21; VFD370CP63A-21; VFD370CP23A-00/23°-21; VFD450CP23A-00/23°-21; VFD750CP43B-00/43B-21; VFD750CP43B-00/43°-21; VFD450CP63A-00; VFD550CP63A-00; VFD450CP63A-21; VFD550CP63A-21
RF300X00A	≤ 300 MCM	≤ 152 mm²	Diagram A	1	VFD450CP43S-00; VFD550CP43S-00; VFD450CP43S-21; VFD550CP43S-21; VFD550CP23A-00/23°-21; VFD750CP23A-00/23°-21; VFD100CP43A-00/43°-21; VFD1100CP43A-00/43°-21; VFD1320CP43B-00/43B-21; VFD750CP63A-00; VFD900CP63A-00; VFD1100CP63A-00; VFD1320CP63A-00; VFD150CP63A-21; VFD1320CP63A-21; VFD1100CP63A-21; VFD1320CP63A-21; VFD1600CP63A-21; VFD1850CP43B-00/43B-21; VFD1600CP63A-00; VFD2000CP63A-21; VFD2200CP63A-21; VFD1600CP63A-21; VFD2200CP63A-21; VFD2200CP63A-21; VFD2500CP63A-21; VFD2200CP43A-00/43A-21; VFD2500CP63A-00; VFD3150CP63A-21; VFD2500CP63A-21; VFD3150CP63A-00; VFD2500CP63A-21; VFD3150CP63A-21; VFD2500CP63A-21; VFD3150CP63A-00; VFD2500CP63A-21; VFD3150CP63A-00; VFD4500CP63A-21; VFD3150CP63A-00; VFD4500CP63A-00; VFD4000CP63A-00; VFD4500CP63A-00; VFD5600CP63A-21; VFD4500CP63A-00; VFD4000CP63A-01; VFD4500CP63A-00; VFD4000CP63A-21; VFD4500CP63A-21; VFD4000CP63A-01; VFD6300CP63A-21; VFD4000CP63A-21; VFD4500CP63A-21; VFD4000CP63A-21; VFD4500CP63A-21; V

*575V insulated power cable

Diagram A

Please put all wires through at least one core without winding.

- **Note 1:** The table above gives approximate wire size for the zero phase reactors but the selection is ultimately governed by the type and diameter of cable fitted i.e. the cable must fit through the center hole of zero phase reactors.
- Note 2: Only the phase conductors should pass through, not the earth core or screen.
- **Note 3:** When long motor output cables are used, an output zero phase reactor may be required to reduce radiated emissions from the cable.

7-6 EMC Filter

The following table shows external EMC filter models for each CP2000 series AC motor drive. Users can choose corresponding zero phase reactor and applicable shielding cable according to required noise emission and electromagnetic disturbance rating, to make the best assembly and restrain electromagnetic disturbance. If radiation emission (RE) is ignored, and only needs conducted emission (CE) to reach Class C2 or C1 on site, zero phase reactor does not need to add at input side, and it can reach the standard of EMC.

230V/460V Series

		Input Current	Applicable EMC Filter	Zero Phase* Reactor		Carrier Frequency	CE Cable		Radiation
Frame	Model						Length		Emission
Frame				Input Side Output Side			default carrier		frequency
		(A)		(R/S/T)	(U/V/W)		C1	C2	EN61800-3
	VFD007CP23A	6.4							
	VFD015CP23A	9.6		RF008X00A	RF008X00A				
А	VFD022CP23A	15	EMIFUZIAZSA						
	VFD037CP23A	22							
	VFD055CP23A	25				≧ok⊓z			
	VFD075CP23A	35	EMF056A23A						
В	VFD110CP23A	50		RF004X00A	RF004X00A				
	VFD150CP23A	65							
	VFD185CP23A	83	KMF3100A		RF002X00A	≦6kHz	50m	100m	C2
С	VFD220CP23A	100		N/A					
	VFD300CP23A	116	B8/1/3D0150B127						
D	VFD370CP23A	146	D04143D01301(127						
D	VFD450CP23A	180	B84143B0250S020						
	VFD550CP23A	215	664143602303020	N/A	RF300X00A	≦4kHz			
Е	VFD750CP23A	276	P94142P0400S020						
	VFD900CP23A	322	004143004003020						
	VFD007CP43A	4.3		RF008X00A	008X00A RF008X00A	≦8kHz			
	VFD015CP43B	6							
	VFD022CP43B	8.1							
А	VFD037CP43B	12.4							
	VFD040CP43A	16							
	VFD055CP43B	20							
	VFD075CP43B	22	EMF039A43A			≦8kHz			
	VFD110CP43B	26		RF004X00A					
В	VFD150CP43B	35			RF004X00A				
	VFD185CP43B	42							
	VFD220CP43A	50	KMF370A	- N/A	RF002X00A				
С	VFD300CP43B	66							
	VFD370CP43B	80	B84143D0150B127						
D0	VFD450CP43S	91	-B84143D0150R127						

	Model	Input	Applicable EMC Filter	Zero Phase* Reactor		Carrier	CE Cable		Radiation
Frame		Current					Length		Emission
Traine				Input Side	Output Side	Frequency	defau	It carrie	er frequency
		(A)		(R/S/T)	(U/V/W)		C1	C2	EN61800-3
D0	VFD550CP43S	110	P94142D0150D127	N/A	RF002X00A	≦6kHz	50m	100m	Pass
	VFD750CP43B	150	B04143D0150R127						
	VFD900CP43A	180	B94442D0200D427			≦4kHz			
E F	VFD1100CP43A	220	1604143D0200R127	N/A	RF300X00A				
	VFD1320CP43B	260							
	VFD1600CP43A	310	MIF3400B						
	VFD1850CP43B	370							
6	VFD2200CP43A	460							
G	VFD2800CP43A	530	MIF3800						
Н	VFD3150CP43A	616							
	VFD3550CP43A	683							
	VFD4000CP43A	770							
	VFD5000CP43A	930	B84143B1000S020						

575V/690V Series

		Input		Zero Phase*	CE Cable Length		Radiation Emission	
Frame	Model	Current	Applicable EMC	Reactor	default carrier frequency			
Traine	Wodel		Filter	(See explanation		C2	EN61800-3	
		(A)		below the table)	C1			
	VFD022CP53A-21	5.4	EMF008A63A		50m	100m		
A	VFD037CP53A-21	10.4	EMF014A63A				C2	
	VFD055CP53A-21	14.9		RF008X00A				
Б	VFD075CP53A-21	16.9						
Б	VFD110CP53A-21	21.3	EMFU27A03A					
	VFD150CP53A-21	26.3						
С	VFD185CP63A-21	29		RF002X00A				
	VFD220CP63A-21	36						
	VFD300CP63A-21	43						
	VFD370CP63A-21	54	B84143A0050R021					
	VFD450CP63A-00 VFD450CP63A-21	54						
D	VFD550CP63A-00 VFD550CP63A-21	67						
	VFD750CP63A-00 VFD750CP63A-21	84	B84143A0120D021	RF300X00A				
E	VFD900CP63A-00 VFD900CP63A-21	102	004143A0120R021					
E	VFD1100CP63A-00 VFD1100CP63A-21	122	P94142P0150S021					
	VFD1320CP63A-00 VFD1320CP63A-21	147	664143601505021					
F	VFD1600CP63A-00 VFD1600CP63A-21	178	B84143B0250S021					
	VFD2000CP63A-00 VFD2000CP63A-21	217	004140002000021					

Frame	Model	Input Current	Applicable EMC Filter	Zero Phase* Reactor	CE Cable Length Radiation Emis		Radiation Emission er frequency
		(A)		(See explanation below the table)	C1	C2	EN61800-3
G	VFD2500CP63A-00 VFD2500CP63A-21	292	D04442D0400C024	RF300X00A	50m	100m	C2
	VFD3150CP63A-00 VFD3150CP63A-21	353	884143804005021				
н	VFD4000CP63A-00 VFD4000CP63A-21	454	D04442D00000004				
	VFD4500CP63A-00 VFD4500CP63A-21	469	884143806005021				
н	VFD5600CP63A-00 VFD5600CP63A-21	595	B84143B0600S021				
	VFD6300CP63A-00 VFD6300CP63A-21	681	B84143B1000S021				

*For models of Frame A~C: On both input and output side, a zero phase reactor is required to be wired to the motor drive. There should be in total 2 zero phase reactors.

For models of Frame D~H: Only 1 zero phase reactor is required to be wired on the output side of the motor drive.

EMC Filter Dimension

EMC filter model name: EMF021A23A; EMF014A43A

EMC filter model name: EMF018A43A

EMC filter model name: EMF056A23A; EMF039A43A

EMC filter model name: KMF370A; KMF3100A

EMC filter model name: B84143D0150R127

EMC filter model name: B84143D0200R127

EMC filter model name: B84143B0250S020

EMC filter model name: B84143B0400S020

EMC filter model name: B84143B1000S020

Following table is the suggested shielded cable length of EMC built-in models. User can choose corresponding shielded cable length in accord to required noise emission and electromagnetic interference level.

EMC built-in model		Rated current	Comply with EMC (IEC Class C3	61800-3)	Comply with EMC (IEC 61800-3) Class C2		
Frame	Model	(ND)	Shielded cable length Fc		Shielded cable length	Fc	
	VFD007CP4EA-21	3.5		≤ 8kHz	10m	≤ 8kHz	
	VFD015CP4EB-21	4.3					
^	VFD022CP4EB-21	5.9					
B	VFD037CP4EB-21	8.7					
	VFD040CP4EA-21	14					
	VFD055CP4EB-21	15.5					
	VFD075CP4EB-21	17	3011				
	VFD110CP4EB -21	20					
	VFD150CP4EB -21	26					
с	VFD185CP4EB -21	35		≤ 6kHz			
	VFD220CP4EA -21	40				≤ 6kHz	
	VFD300CP4EB -21	47					

* Shielded cable length of Frame A should not longer than 30m and Frame B, C not longer than 50m to prevent cable length from being too long, which may cause built-in EMC filter malfunction due to overheat resulting from leakage current and larger wires parasitic capacitance.

EMC Filter Installation

All electrical equipment, including AC motor drives, will generate high-frequency/low-frequency noise and will interfere with peripheral equipment by radiation or conduction when in operation. By using an EMC filter with correct installation, much interference can be eliminated. It is recommended to use DELTA EMC filter to have the best interference elimination performance.

We assure that it can comply with following rules when AC motor drive and EMC filter are installed and wired according to user manual:

- EN61000-6-4
- EN61800-3: 1996
- EN55011 (1991) Class A Group 1 (1st Environment, restricted distribution)

General precaution

- 1. EMC filter and AC motor drive should be installed on the same metal plate.
- 2. Please install AC motor drive on footprint EMC filter or install EMC filter as close as possible to the AC motor drive.
- 3. Please wire as short as possible.
- 4. Metal plate should be grounded.
- 5. The cover of EMC filter and AC motor drive or grounding should be fixed on the metal plate and the contact area should be as large as possible.

Choose suitable motor cable and precautions

Improper installation and choice of motor cable will affect the performance of EMC filter. Be sure to observe the following precautions when selecting motor cable.

- 1. Use the cable with shielding (double shielding is the best).
- 2. The shielding on both ends of the motor cable should be grounded with the minimum length and maximum contact area.
- 3. Remove any paint on metal saddle for good ground contact with the plate and shielding.

7-7 Digital Keypad

KPC-CE01

Descriptions of Keypad Functions

Key	Descriptions			
RUN	 Start Operation Key 1. It is only valid when the source of operation command is from the keypad. 2. It can operate the AC motor drive by the function setting and the RUN LED will be ON 3. It can be pressed repeatedly at stop process. 			
STOP RESET	 Stop Command Key. This key has the highest processing priority in any situation. When it receives STOP command, no matter the AC motor drive is in operation or stop status, the AC motor drive needs to execute "STOP" command. The RESET key can be used to reset the drive after the fault occurs. The reasons why the error cannot be reset: a. Because the condition, which triggers the fault, is not cleared. When the condition is cleared, the fault can be reset b. Because it's the fault status checking when power-on. When the condition is cleared, repower again, and the fault can be reset 			
FWD	 Operation Direction Key This key only controls the operation direction, NOT for activate the drive. FWD: forward, REV: reverse. Refer to the LED descriptions for more details. 			
ENTER	ENTER Key Press ENTER and go to the next level. If it is the last level then press ENTER to execute the command.			
ESC	ESC Key ESC key function is to leave current menu and return to the last menu. It is also functioned as a return key or cancel key in the sub-menu.			
MENU	Press menu to return to main menu. Menu content: KPC-CE01 does not support function 5 ~13. 1. Parameter setup 7. Quick start 13. PC Link 2. Copy Parameter 8. Display Setup 3. Keypad Locked 9. Time Setup 4. PLC Function 10. Language Setup 5. Copy PLC 11. Startup Menu 6. Fault Record 12 Main Page			

Кеу	Descriptions		
	 Direction: Left / Right / Up / Down In the numeric value setting mode, it is used to move the cursor and change the numeric value. In the menu/text selection mode, it is used for item selection. 		
F1 F2 F3 F4	 Function Key The function keys are default settings from the factory, and can be defined by users. The factory settings of F1 and F4 work with the function list below. For example, F1 is JOG function, F4 is a speed-setting key for adding/deleting user defined parameters. Other functions must be defined by TPEditor first (please use version 1.40 or above). TPEditor software can be downloaded at: <u>http://www.deltaww.com/services/DownloadCenter2.aspx?secID=8&pid=2&tid=0&CID=06&itemID=060302&typeID=1&downloadID=,&title= Select Product Series -& atatype=8;✓=1&hl=en-US Please refer to instruction for TPEditor in Chapter 10-3.</u> 		
HAND	 HAND ON Key This key is executed by the parameter settings of the source of Hand frequency and hand operation. The factory settings of both source of Hand frequency and hand operation are the digital keypad. Press HAND ON key at stop status, the setting will switch to hand frequency source and hand operation source. Press HAND ON key at operation status, it stops the AC motor drive first (display AHSP warning), and switch to hand frequency source and hand operation source. Successful mode switching for KPC-CE01, "HAND" LED will be on; for KPC-CC01, it will display HAND mode on the screen. 		
AUTO	 This key is executed by the parameter settings of the source of AUTO frequency and AUTO operation. The factory setting is the external terminal (source of operation is 4-20mA). Press Auto key at stop status, the setting will switch to auto frequency source and auto operation source. Press Auto key at operation status, it stops the AC motor drive first (display AHSP warning), and switch to auto frequency source and auto operation source. Successful mode switching for KPC-CE01, "AUTO" LED will be on; for KPC-CC01, it will display AUTO mode on the screen 		

Descriptions of LED Functions

LED	Descriptions		
	Steady ON: operation indicator of the AC motor drive, including DC brake, zero speed,		
	standby, restart after fault and speed search.		
KUN	Blinking: drive is decelerating to stop or in the status of base block.		
	Steady OFF: drive doesn't execute the operation command		
	Steady ON: stop indicator of the AC motor drive.		
	Blinking: drive is in the standby status.		
KEGET	Steady OFF: drive doesn't execute "STOP" command.		
	Operation Direction LED		
	1. Green light is on: the drive is running forward.		
	2. Red light is on: the drive is running backward.		
	3. Twinkling light: the drive is changing direction.		
	Operation Direction LED under Torque Mode		
FWD	1. Green light is on, when torque command is greater than or equal to zero, and the drive is running forward.		
	2. Red light is on, when the torque command is smaller than zero, and the drive is running backward.		
	3. Twinkling light: when the torque command is smaller than zero, and the drive is running		
	forward.		
	(Only KPC-CE01 support this function)		
HAND	Steady On: In HAND/LOC mode		
	Steady Off: In AUTO/REM mode		
	(Only KPC-CE01Support this function)		
ΑΠΤΟ	Steady On: In AUTO/REM mode		
	Steady Off: In HAND/LOC mode		

	RUN LED	
CANopen ~"RUN"	LED	Condition/State
		CANopen at initial
		No LED
	Blinking	CANopen at pre-operation
		ON-200 200 ms ms ms
	Single flash	CANopen at stopped ON-200 200 1000 ms ms ms ms
	ON	CANopen at operation status No LED
	ERR LED	
	LED	Condition/ State
		No Error
	Single flash	One message fail
		ON 200 1000 Ms ms
	Double	Guarding fail or heartbeat fail
CANopen ~"ERR"	flash	ON2002001000
		OFF MS MS MS
	Triple flash	
		200 200 200 200 1000 Ms Ms Ms Ms Ms Ms
	ON	Bus off

Dimension

RJ45 Extension Lead for Digital Keypad

Part #	Description
CBC-K3FT	3 feet RJ45 extension lead (approximately 0.9m)
CBC-K5FT	5 feet RJ45 extension lead (approximately 1.5 m)
CBC-K7FT	7 feet RJ45 extension lead (approximately 2.1 m)
CBC-K10FT	10 feet RJ45 extension lead (approximately 3 m)
CBC-K16FT	16 feet RJ45 extension lead (approximately 4.9 m)

7-8 Panel Mounting (MKC-KPPK)

For MKC-KPPK model, user can choose wall mounting or embedded mounting, protection level is IP66.

It is applicable to the digital keypads (KPC-CC01 & KPC-CE01).

7-9 Conduit Box Kit

Appearance of conduit box

For VFDXXXCPXXA-XX (Frame D and above) and VFDXXXCP43S-XX, the Conduit Box Kit is optional accessories. The specification will be IP20/ NEMA1/ UL TYPE1 after the installation.

Frame D0

Frame D

Applicable models: VFD370CP23A-00, VFD450CP23A-00, VFD750CP43B-00, VFD900CP43A-00, VFD370CP23A-21, VFD450CP23A-21, VFD750CP43B-21, VFD900CP43A-21, VFD450CP63A-00, VFD550CP63A-00, VFD450CP63A-21, VFD550CP63A-21

Model number [®]MKC-DN1CB₁

Frame E

Applicable models: VFD550CP23A-00, VFD750CP23A-00, VFD900CP23A-00, VFD1100CP43A-00, VFD1320CP43B-00, VFD550CP23A-21, VFD750CP23A-21, VFD900CP23A-21, VFD1100CP43A-21, VFD1320CP43B-21, VFD750CP63A-00, VFD1100CP63A00, VFD1320CP63A-00, VFD750CP63A-21, VFD900CP63A-21, VFD1100CP63A-21, VFD1320CP63A-21

Model number [®]MKC-EN1CB₂

ITEM	Description	Qtv.
1	Screw M5*0.8*10L	6
2	Bushing Rubber 28	2
3	Bushing Rubber 44	4
4	Bushing Rubber 100	2
5	Conduit box cover	1
6	Conduit box base	1

Figure 7-3

ITEM 6

Frame F Applicable models: VFD1600CP43A-00, VFD1850CP43B-00, VFD1600CP43A-21, VFD1850CP43B-21, VFD1600CP63A-00, VFD2000CP63A-00, VFD1600CP63A-21, VFD2000CP63A-21 Model number [®]MKC-FN1CB_a Item 1 Item 1 ITEM Description Qty Item 5-Screw M5*0.8*10L 8 Item 1 1 2 2 **Bushing Rubber 28 Bushing Rubber 44** 3 4 Item 3-Item 1 Item 1 4 Bushing Rubber 100 2 ۲ 5 Conduit box cover 1 Item 3 6 1 Ð Conduit box base Figure 7-4 Item 6 6 Item 4 Item 3 *P* -Item 2 Item 4 Item 2 Item 3 Frame G Applicable models: VFD2200CP43A-00, VFD2800CP43A-00, VFD2200CP43A-21, VFD2800CP43A-21, VFD2500CP63A-00, VFD3150CP63A-00, VFD2500CP63A-21, VFD3150CP63A-21 型號『MKC-GN1CB』 ITEM Description Qty. Screw M5*0.8*10L 12 1 **Bushing Rubber 28** 2 2 ITEM 1 2 3 Bushing Rubber 44 4 Bushing Rubber 130 3 ITEM 5 5 Conduit box cover 1

6

Conduit box base

Figure

1

ITEM 2

ITEM 3

ITEM 4

ITEM

ITEM 4

ITEM 2

ITEM 4

Frame H

Applicable models: VFD3150CP43A-00, VFD3550CP43A-00, VFD4000CP43A-00, VFD5000CP43A-00, VFD3150CP43C-00, VFD3550CP43C-00, VFD4000CP43C-00, VFD5000CP43C-21, VFD3150CP43C-21, VFD3550CP43C-21, VFD4000CP43C-21, VFD5000CP43C-21, VFD4000CP63A-00, VFD4000CP63A-00, VFD4500CP63A-00, VFD5600CP63A-00, VFD6300CP63A-00, VFD4000CP63A-21, VFD4500CP63A-21, VFD5600CP63A-21, VFD6300CP63A-21

Model number [®] MKC-HN1CB _』

ITEM	Description	Qty.
1	Screw M6*1.0*25L	8
2	Screw M8*1.25*30L	3
3	NUT M8	4
4	NUT M10	4
5	Bushing Rubber 28	4
6	Bushing Rubber 44	2
7	Bushing Rubber 130	4
8	Conduit box cover 1	1
9	Conduit box cover 2	2
10	Conduit box cover 3	2
11	Conduit box cover 4	2
12	Conduit box base	1
13	Accessories 1	2
14	Accessories 2	1

Figure 7-6

Conduit Box Installation

Frame D0

1. Loosen the cover screws and press the tabs on each side of the cover to remove the cover, as shown in the following figure. Screw torque: 12~15 kg-cm / [10.4~13 lb-in.] / [1.2~1.5 Nm]

Remove the 5 screws shown in the following figure. Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]

3. Install the conduit box by fasten the 5 screws shown in the following figure. Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]

4. Fasten the 2 screws shown in the following figure. Screw torque: 12~15 kg-cm / [10.4~13 lb-in.] / [1.2~1.5 Nm]

Frame D

1. Loosen the cover screws and press the tabs on each side of the cover to remove the cover, as shown in the following figure. Screw torque: 12~15 kg-cm / [10.4~13 lb-in.] / [1.2~1.5 Nm]

Remove the 5 screws shown in the following figure. Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]

3. Install the conduit box by fasten the 5 screws shown in the following figure. Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]

4. Fasten the 2 screws shown in the following figure. Screw torque: 12~15 kg-cm / [10.4~13 lb-in.] / [1.2~1.5 Nm]

Frame E

1. Loosen the 4 cover screws and lift the cover; Screw torque: 12~15 kg-cm / [10.4~13 lb-in.] / [1.2~1.5 Nm]

2. Fasten the 6 screws shown in the following figure and place the cover back to the original position. Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]

3. Fasten the 4 screws shown in the following figure. Screw torque: 12~15 kg-cm / [10.4~13 lb-in.] / [1.2~1.5 Nm]

Frame F

1. Loosen the cover screws and press the tabs on each side of the cover to remove the cover, as shown in the following figure. Screw torque: 12~15 kg-cm / [10.4~13 lb-in.] / [1.2~1.5 Nm]

2. Install the conduit box by fastens the 4 screws, as shown in the following figure. Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]

 Install the conduit box by fasten all the screws shown in the following figure Screw 9~12 torque: 12~15 kg-cm / [10.4~13 lb-in.] / [1.2~1.5 Nm] Screw 13~16 torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]

Frame G

 On the conduit box, loosen 7 of the cover screws and remove the cover Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]. On the drive, loosen 4 of the cover screws and press the tabs on each side of the cover to remove the cover, as shown in the following figure. Screw torque: 12~15 kg-cm / [10.4~13 lb-in.] / [1.2~1.5 Nm]

Remove the top cover and loosen the screws.
 M5 Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]
 M8 Screw torque: 100~120 kg-cm / [86.7~104.1 lb-in.] / [9.8~11.8 Nm]

Install the conduit box by fastening all the screws shown in the following figure.
 M5 Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in] / [2.4~2.5 Nm]
 M8 Screw torque: 100~120 kg-cm / [86.7~104.1 lb-in] / [9.8~11.8 Nm]

Fasten all the screws. Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]

Place the cover back to the top and fasten the screws (as shown in the figure). Screw torque: 12~15 kg-cm / [10.4~13 lb-in.] / [1.2~1.5 Nm]

Frame H

Assembled to H3 (Conduit Box Kit)

1. Loosen the screws and remove the cover of conduit box H3 as preparation.

2. Loosen the screws as below figure shown.

3. Fasten the M6 screws to locations shown in below figure. Screw torque: 35~45 kg-cm / [30.3~39 lb-in.] / [3.4~4.4 Nm]

4. Install the conduit box by fasten all the screws shown in the following figure Screw 1~6: M6 screw torque: 55~65 kg-cm / [47.7~56.4 lb-in] / [5.4~6.4 Nm] Screw 7~9: M8 screw torque: 100~110 kg-cm / [86.7~95.4 lb-in] / [9.8~10.8 Nm] Screw 10~13: M10 screw torque: 250~300 kg-cm / [216.9~260.3 lb-in] / [24.5~29.4 Nm] Screw 14~17: M8 screw torque: 100~110 kg-cm / [86.7~95.4 lb-in] / [9.8~10.8 Nm]

5. Fasten the 3 covers and screws, which are loosen from step1, to the original location. Screw torque: 35~45 kg-cm / [30.3~39 lb-in.] / [3.4~4.4 Nm]

6. Installation complete.

Assembled to H2 (Stand upright)

1. Loosen the screws and remove the cover of conduit box H3.

2. Remove 4 covers of conduit box, and fasten the loosen screws back to the original location. Screw torque: 100~110 kg-cm / [86.7~95.4 lb-in] / [9.8~10.8 Nm]

3. Remove the parts and screws as below figure shown.

4. Fasten the M6 screws to locations shown in below figure. Screw torque: 35~45 kg-cm / [30.3~39 lb-in.] / [3.4~4.4 Nm]

 Install conduit box and accessories by fasten all the screws shown in the following figure. Screws 1~6: M6 screw torque: 55~65 kg-cm / [47.7~56.4 lb-in] / [5.4~6.4 Nm] Screws 7~9: M8 screw torque: 100~110 kg-cm / [86.7~95.4 lb-in] / [9.8~10.8 Nm] Screws 10~13: M10 screw torque: 250~300 kg-cm / [216.9~260.3 lb-in] / [24.5~29.4 Nm] Screws 14~17: M8 screw torque: 100~110 kg-cm / [86.7~95.4 lb-in] / [9.8~10.8 Nm]

6. Installation complete.

7-10 Fan Kit

Appearance of the fan kit

NOTE: The fan does not support hot swap function. For replacement, turn the power off before replacing the fan.

Frame H

Applicable Model Below models use two MKC-HFKM fans VFD3150CP43A-00; VFD3150CP43C-00; VFD3150CP43C-21; VFD3550CP43A-00; VFD3550CP43C-00; VFD3550CP43C-21; VFD4000CP43A-00; VFD4000CP43C-00; VFD4000CP43C-21; VFD5000CP43A-00; VFD5000CP43C-00; VFD5000CP43C-21

Frame H

Applicable Model

VFD4000CP63A-00; VFD4000CP63A-21; VFD4500CP63A-00; VFD4500CP63A-21; VFD5600CP63A-00; VFD5600CP63A-21; VFD6300CP63A-00; VFD6300CP63A-21

Fan Removal

Frame A

Model『MKC-AFKM』: Heat Sink Fan

Applicable model

VFD022CP23A-21; VFD037CP23A-21; VFD055CP23A-21; VFD022CP43B-21; VFD022CP4EB-21;

VFD037CP43B-21; VFD037CP4EB-21; VFD040CP43A-21; VFD040CP4EA-21; VFD055CP43B-21;

VFD055CP4EB-21; VFD015CP53A-21; VFD022CP53A-21; VFD037CP53A-21

Model『MKCB-AFKM2』: Heat Sink Fan

Applicable model

VFD075CP43B-21; VFD075CP4EB-21

- 1. fan to successfully remove the fan.
- Refer to Figure 1, press the tabs on both side of the 2. Disconnect the power terminal before removing the fan. (As shown below.)

Figure 2

Frame B

Model『MKC-BFKM1』Heat Sink Fan

Applicable model

VFD075CP23A-21; VFD110CP43B-21; VFD110CP4EB-21; VFD055CP53A-21; VFD075CP53A-21;

VFD110CP53A-21; VFD150CP53A-21

Model『MKC-BFKM2』Heat Sink Fan

Applicable model

VFD110CP23A-21; VFD150CP43B-21; VFD150CP4EB-21; VFD185CP43B-21; VFD185CP4EB-21

Model『MKC-BFKM3』Heat Sink Fan

Applicable model

VFD150CP23A-21

1. Refer to Figure 1, press the tab on both side of the fan to successfully remove the fan.

2. Disconnect the power terminal before removing the fan. (As shown below.)

Frame B

Model 『MKC-BFKB』Capacitor Fan

Applicable model

VFD075CP23A-21; VFD110CP23A-21; VFD110CP43B-21; VFD110CP4EB-21; VFD150CP23A-21;

VFD150CP43B-21; VFD150CP4EB-21; VFD185CP43B-21; VFD185CP4EB-21

Disconnect fan power and pull out the fan by using flathead screwdriver. (As shown in the larger picture)

Frame C

Model『MKC-CFKM』Heat Sink Fan

Applicable model

Single fan kit applicable models (only fan kit 1 is required to be installed):

VFD220CP43A-21; VFD220CP4EA-21; VFD300CP43B-21; VFD300CP4EB-21; VFD370CP43B-21;

VFD185CP63A-21; VFD220CP63A-21; VFD300CP63A-21; VFD370CP63A-21

Dual fan kit applicable models (both fan kit 1 and 2 are required to be installed):

VFD185CP23A-21; VFD220CP23A-21; VFD300CP23A-21; VFD370CP4EB-21

1. (As shown Figure 1) Before removing the fan, remove the cover by using a slotted screwdriver.

Frame D0

Model『MKC-DFKB』Capacitor Fan

Applicable model

VFD450CP43S-00; VFD450CP43S-21; VFD550CP43S-00; VFD550CP43S-21

1. Loosen screw 1 and screw 2, press the tab on the 2. (Figure 2) Loosen screw 3, press the tab on the right right and left to remove the cover, follow the direction the arrows indicate. Press on top of digital keypad to properly remove it. Screw 1, 2 Torque: 12~15 kg-cm / [10.4~13 lb-in.] / [1.2~1.5 Nm]

Figure 1

3. Loosen screw 4 (figure 3) and disconnect fan power and pull out the fan. (As shown in the enlarged picture 3) Screw 4 Torque: 10~12 kg-cm / [8.7~10.4 lb-in.] / [1.0~1.2 Nm]

and the left to remove the cover. Screw 3 Torque: 6~8 kg-cm / [5.2~6.9 lb-in.] / [0.6~0.8 Nm]

Figure 2

Frame D0

Model 『MKC-D0FKM』Heat Sink Fan

Applicable model

VFD450CP43S-00; VFD450CP43S-21; VFD550CP43S-00; VFD550CP43S-21

- 1. Loosen the screw and remove the fan kit. Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in. / [2.4~2.5 Nm]
- 2. (As shown Figure 1) Before removing the fan, remove the cover by using a slotted screwdriver.

Frame D

Model 『MKC-DFKB』Capacitor Fan

Applicable model

VFD370CP23A-00; VFD370CP23A-21; VFD450CP23A-00; VFD450CP23A-21; VFD750CP43B-00;

VFD750CP43B-21; VFD900CP43A-00; VFD900CP43A-21; VFD450CP63A-00; VFD450CP63A-21;

VFD550CP63A-00; VFD550CP63A-21

 Loosen screw 1 and screw 2, press the tab on the 2. right and the left to remove the cover, follow the direction the arrows indicate. Press on top of digital keypad to properly remove it. Screw 1, 2 Torque: 12~15 kg-cm / [10.4~13 lb-in.] / [1.2~1.5 Nm]

Figure 1

 Loosen screw 5 (figure 3) and disconnect fan power and pull out the fan. (As shown in the enlarged picture 3) Screw 5 Torque: 10~12 kg-cm / [8.6~10.4 lb-in.] / [1.0~1.2 Nm]

Figure 2

Frame E

Model『MKC-EFKM3』: Heat Sink Fan

Applicable model

VFD750CP63A-00; VFD750CP63A-21; VFD900CP63A-00; VFD900CP63A-21; VFD1100CP63A-00;

VFD1100CP63A-21; VFD1320CP63A-00; VFD1320CP63A-21

Loosen screw 1~4 (figure 3) and disconnect fan power and pull out the fan. (As shown in the enlarged picture 3)

Figure 4

Frame F

Fan model『MKC-FFKM』Heat Sink Fan

Applicable model

VFD1600CP43A-00; VFD1600CP43A-21; VFD1850CP43B-00; VFD1850CP43B-21; VFD1600CP63A-00; VFD1600CP63A-21; VFD2000CP63A-00; VFD2000CP63A-21

Loosen the screws and plug out the power of fan before removing it (figure 1). Screw torque: 12~15 kg-cm / [10.4~13 lb-in.] / [1.2~1.5 Nm]

Chapter 7 Optional Accessories | CP2000

7-11 Flange Mounting Kit

Applicable Models, Frame A~F

Frame A

『MKC-AFM1』

Applicable model

VFD022CP23A-21; VFD022CP43B-21; VFD022CP4EB-21; VFD037CP23A-21; VFD015CP53A-21;

VFD022CP53A-21; VFD037CP53A-21

『MKC-AFM』

Applicable model

VFD007CP4EA-21; VFD015CP23A-21; VFD015CP43B-21; VFD015CP4EB-21; VFD022CP23A-21; VFD037CP43B-21; VFD037CP4EB-21; VFD055CP23A-21; VFD040CP43A-21; VFD040CP4EA-21; VFD055CP43B-21; VFD055CP43B-21; VFD075CP43B-21; VFD075CP4EB-21

Screw *8 M6*P 1.0; L=16mm

Cutout dimension

Unit : mm [inch]

[®] MKC-AFM1 [』] Installation

 Install accessory 1 by fastening 4 of the screw 1(M3) (figure 1). Screw torque: 6~8 kg-cm / [5.21~6.94 lb-in.] / [0.6~0.8 Nm]

Figure 3

4. Plate installation, place 4 of the screw 2 (M6) (figure 4) through accessory 2&3 and the plate then fasten the screws. Screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm]

Image: screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm]

Image: screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm]

Image: screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm]

Image: screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm]

Image: screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm]

Image: screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm]

Image: screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm]

Image: screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm]

Image: screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm]

Image: screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm]

Image: screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm]

Image: screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm]

Image: screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm]

Image: screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm]

Image: screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm]

Image: screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm]

Image: screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [21.

[®]MKC-AFM Installation

1. Fasten screw*2(M6) and accessory 2&3. Screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm] (figure 1) Figure 1 Fasten screw*2(M6) and accessory 2&3. Screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm] (figure 2. 2) Figure 2

Chapter 7 Optional Accessories | CP2000

Frame B

『MKC-BFM』

Applicable model

VFD075CP23A-21; VFD110CP23A-21; VFD110CP43B-21; VFD110CP4EB-21; VFD150CP23A-21; VFD150CP43B-21; VFD150CP4EB-21; VFD185CP43B-21; VFD185CP4EB-21; VFD055CP53A-21; VFD075CP53A-21; VFD110CP53A-21; VFD150CP53A-21

Screw 1 *4 ~ M8*P 1.25; Screw 2*6 ~ M6*P 1.0

Accessory 1*2

کې Accessory 2*2

Cutout dimension

Unit : mm [inch]

[®] MKC-BFM [』] Installation

1. Install accessory 1& 2 by fastening 4 of the screw 1(M8). Screw torque: 40~45 kg-cm / [34.7~39.0 lb-in.] / [3.9~4.4 Nm] (As shown in the following figure) ę SCREV ACCESSORIES 1 ACCESSORIES e ACCESSORIES 2 ACCESSORIES 2 2. Plate installation, place 6 of the screw 2 (M6) through accessory 1&2 and the plate then fasten the screws. Screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm] (As shown in the following figure) SCREW ę

Chapter 7 Optional Accessories | CP2000

Frame C

『MKC-CFM』

Applicable model

VFD185CP23A-21; VFD220CP23A-21; VFD220CP43A-21; VFD220CP4EA-21; VFD300CP23A-21; VFD300CP43B-21; VFD300CP4EB-21; VFD370CP43B-21; VFD370CP4EB-21; VFD185CP63A-21; VFD220CP63A-21; VFD300CP63A-21; VFD370CP63A-21

Accessory 2*2

Screw 1*4 ~ M8*P 1.25; Screw 2*8 ~ M6*P 1.0

Accessory 1*2

Cut out dimension

Unit : mm [inch]

[®] MKC-CFM [』] Installation

1. Install accessory 1& 2 by fastening 4 of the screw 1(M8). Screw torque: 50~55 kg-cm / [43.4~47.7 lb-in.] / [4.9~5.4 Nm] (As shown in the following figure) ø SCREW ę ACCESSORIES 1 90 ACCESSORIES ACCESSORIES 2 2. Plate installation, place 8 of the screw 2 (M6) through Accessory 1&2 and the plate then fasten the screws. Screw torque: 25~30 kg-cm / [21.7~26 lb-in.] / [2.5~2.9 Nm] (As shown in the following figure) ø

Frame D0

Applicable model

VFD450CP43S-00; VFD450CP43S-21; VFD550CP43S-00; VFD550CP43S-21

Cutout dimension

Unit: mm [inch]

Frame D

Applicable model

VFD370CP23A-00; VFD370CP23A-21; VFD450CP23A-00; VFD450CP23A-21; VFD450CP43A-00; VFD450CP43A-21; VFD550CP43A-00; VFD550CP43A-21; VFD750CP43B-00; VFD750CP43B-21; VFD900CP43A-00; VFD900CP43A-21; VFD450CP63A-00; VFD450CP63A-21; VFD550CP63A-00; VFD550CP63A-21

Cutout dimension

Unit: mm [inch]

Frame E

Applicable model

VFD550CP23A-00; VFD550CP23A-21; VFD750CP23A-00; VFD750CP23A-21; VFD900CP23A-00; VFD900CP23A-21; VFD1100CP43A-00; VFD1100CP43A-21; VFD1320CP43B-00; VFD1320CP43B-21; VFD750CP63A-00; VFD750CP63A-21; VFD900CP63A-00; VFD900CP63A-21; VFD1100CP63A-00; VFD1100CP63A-21; VFD1320CP63A-00; VFD1100CP63A-21; VFD1320CP63A-00; VFD1100CP63A-21; VFD1320CP63A-00; VFD1100CP63A-21; VFD1320CP63A-00; VFD1100CP63A-21; VFD1320CP63A-00; VFD1100CP63A-21; VFD1320CP63A-00; VFD1320CP63A-00; VFD1320CP63A-00; VFD1100CP63A-21; VFD1320CP63A-00; VFD1100CP63A-00;
Cutout dimension

Unit: mm [inch]

Frame D0 & D & E Installation

1. Loosen 8 screws and remove Fixture 2 (as shown in 2. Loosen 10 screws and remove Fixture 1 (as shown the following figure). in the following figure). Fasten 4 screws (as shown in the following figure). Fasten 5 screws (as shown in the following figure). 3. 4. Screw torque: 30~32 kg-cm / [26.0~27.8 lb-in.] / Screw torque: 30~32 kg-cm / [26.0~27.8 lb-in.] / [2.9~3.1 Nm] [2.9~3.1 Nm] 5. Fasten 4 screws (as shown in the following figure). Fasten 5 screws (as shown in the following figure). 6. Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm] [2.4~2.5 Nm] Place 4 screws (M10) through Fixture 1&2 and the 7. plate then fasten the screws. (as shown in the following figure) Frame D0/D M10*4 FIXTURE 1 Screw torque: 200~240 kg-cm / [173.6~208.3 lb-in.] / [19.6~235 Nm] Frame E M12*4 Screw torque: 300~400 kg-cm / [260~347 lb-in.] / [29.4~39.2 Nm]

Frame F Installation

Applicable model

VFD1600CP43A-00; VFD1600CP43A-21; VFD1850CP43B-00; VFD1850CP43B-21; VFD1600CP63A-00; VFD1600CP63A-21; VFD2000CP63A-00; VFD2000CP63A-21

Cutout dimension

Unit : mm [inch]

Frame F

7-12 USB/RS-485 Communication Interface IFD6530

🕂 Warning

Please thoroughly read this instruction sheet before installation and putting it into use.

✓ The content of this instruction sheet and the driver file may be revised without prior notice. Please consult our distributors or download the most updated instruction/driver version at http://www.delta.com.tw/product/em/control/cm/control cm main.asp

1. Introduction

IFD6530 is a convenient RS-485-to-USB converter, which does not require external power-supply and complex setting process. It supports baud rate from 75 to 115.2kbps and auto switching direction of data transmission. In addition, it adopts RJ-45 in RS-485 connector for users to wire conveniently. And its tiny dimension, handy use of plug-and-play and hot-swap provide more conveniences for connecting all DELTA IABG products to your PC.

Applicable Models: All DELTA IABG products.

(Application & Dimension)

2. Specifications

Power supply	No external power is needed		
Power consumption	1.5W		
Isolated voltage	2,500VDC		
Baud rate	75 Kbps, 150 Kbps, 300 Kbps, 600 Kbps, 1,200 Kbps, 2,400 Kbps, 4,800 Kbps, 9,600 Kbps, 19,200 Kbps, 38,400 Kbps, 57,600 Kbps, 115,200 Kbps		
RS-485 connector	RJ-45		
USB connector	A type (plug)		
Compatibility	Full compliance with USB V2.0 specification		
Max. cable length	RS-485 Communication Port: 100 m		
Support RS-485 half-duplex transmission			

■ RJ-45

PIN	Description	
1	Reserved	
2	Reserved	
3	GND	
4	SG-	

PIN	Description	
5	SG+	
6	GND	
7	Reserved	
8	+9V	

3. Preparations before Driver Installation

Please extract the driver file (IFD6530_Drivers.exe) by following steps. You could find driver file (IFD6530_Drivers.exe) in the CD supplied with IFD6530.

Note: DO NOT connect IFD6530 to PC before extracting the driver file.

STEP 3

STEP 4

STEP 5

You should have a folder marked SiLabs under drive C. c:\ SiLabs

4. Driver Installation

After connecting IFD6530 to PC, please install driver by following steps.

Chapter 7 Optional Accessories | CP2000

Repeat Step 1 to Step 4 to complete COM PORT setting.

5. LED Display

- 1. Steady Green LED ON: power is ON.
- 2. Blinking orange LED: data is transmitting.

Chapter 8 Option Cards

- 8-1 Option Card Installation
- 8-2 EMC-D42A (I/O Extension Card)
- 8-3 EMC-D611A (I/O Extension Card)
- 8-4 EMC-R6AA (Relay Extension Card)
- 8-5 CMC-MOD01 (Communication Extension Card)
- 8-6 CMC-PD01 (Communication Extension Card)
- 8-7 CMC-DN01 (Communication Extension Card)
- 8-8 CMC-EIP01
- 8-9 EMC-COP01 (Communication Extension Card)
- 8-10 EMC-BPS01 (24V Power Extension Card)
- 8-11 Delta Standard Fieldbus Cables

Chapter 8 Option Cards | CP2000

Please select applicable option cards for your drive or contact local distributor for suggestion. To prevent drive damage during installation, please removes the digital keypad and the cover before wiring. Refer to the following instruction.

8-1 Option Card Installation

8-1-1 Remove the top cover

Chapter 8 Option Cards | CP2000

8-1-2 Location to Install Extension Card

	1	RJ45 (Socket) for digital keypad
		KPC-CC01; KPC-CE01
		1. Please refer to Ch.10 Digital Keypad for more details
		on KPC-CC01.
		2. Please refer to Ch.10 Digital Keypad for more details
		on optional accessory RJ45 extension cable.
	2	Communication extension card (Slot 1)
(4) Slot 2 Slot 1		1. CMC-MOD01
		2. CMC-PD01
		3. CMC-DN01
		4. CMC-EIP01
		5. EMC-COP01
	3	I/O & Relay 24V power extension card (Slot 3)
		1. EMC-D42A
		2. EMC-D611A
		3. EMC-R6AA
		4. EMC-BPS01
	4	PG Card (Slot 2)
		XCP2000 don't support PG card.

Screws Specification for optional card terminals:

I/O / Relay extension card & 24V Power extension card (Slot 3)

Chapter 8 Option Cards | CP2000

8-1-3 Install and Uninstall of Extension Cards (i.e. communication card installation)

8-1-3-1 Installation

Extension Card installation

8-1-3-2 Disconnecting the extension card

8-2 EMC-D42A

	Terminals	Descriptions		
		Common for Multi-function input terminals		
	СОМ	Select SINK(NPN)/SOURCE(PNP)in J1 jumper / external power		
		supply		
		Refer to Pr. 02-26~Pr. 02-29 to program the multi-function inputs		
		MI10~MI13.		
		Internal power is applied from terminal E24: +24Vdc±5% 200mA,		
	MI10~ MI13	5W		
		External power +24VDC: max. voltage 30VDC, min. voltage 19VDC		
		ON: the activation current is 6.5mA		
I/O Extension		OFF: leakage current tolerance is 10µA		
Card		Multi-function output terminals (photocoupler)		
	MO10~MO11	The AC motor drive releases various monitor signals, such as drive		
		in operation, frequency attained and overload indication, via		
		transistor (open collector).		
		MO11		
		• MXM		
	МХМ	Common for multi-function output terminals MO10, MO11(photo		
		coupler)		
		Max 48VDC 50mA		

8-3 EMC-D611A

	Terminals	Descriptions
I/O Extension Card	AC	AC power Common for multi-function input terminal (Neutral)
	MI10~ MI15	Refer to Pr. 02.26~ Pr. 02.31 for multi-function input selection
		Input voltage: 100~130VAC
		Input frequency: 47~63Hz
		Input impedance: 27KΩ
		Terminal response time:
		ON: 10ms
		OFF: 20ms

8-4 EMC-R6AA

	Terminals	Descriptions
		Refer to Pr. 02-36~ Pr. 02-41 for multi-function input selection
		Resistive load:
		5A(N.O.) / 250VAC
Relay Extension		5A(N.O.) / 30VDC
Card	RA10~RA15 RC10~RC15	Inductive load (COS 0.4)
		2.0A(N.O.) / 250VAC
		2.0A(N.O.) / 30VDC
		It is used to output each monitor signal, such as drive is in
		operation, frequency attained or overload indication.

8-5 CMC-MOD01

8-5-1 Features

- 1. Supports Modbus TCP protocol
- 2. MDI/MDI-X auto-detect
- 3. Baud rate: 10/100Mbps auto-detect
- 4. E-mail alarm
- 5. AC motor drive keypad/Ethernet configuration
- 6. Virtual serial port.

8-5-2 Product File

1	I/O CARD & Relay Card		
2	PG Card (CP2000 do not support PG Card)		
3	Comm. Card		
4	RJ-45 connection port		
5	Removable control circuit terminal		

8-5-3 Specifications

Network Interface

Interface	RJ-45 with Auto MDI/MDIX		
Number of ports	1 Port		
Transmission method	IEEE 802.3, IEEE 802.3u		
Transmission cable	Category 5e shielding 100M		
Transmission speed	10/100 Mbps Auto-Detect		
Network protocol	ICMP, IP, TCP, UDP, DHCP, SMTP, MODBUS OVER TCP/IP, Delta Configuration		

Electrical Specification

Power supply voltage	5VDC (supply by the AC motor drive)
Insulation voltage	500VDC
Power consumption	0.8W
Weight	25g

Environment

	ESD (IEC 61800-5-1, IEC 61000-4-2)
Noise immunity	EFT (IEC 61800-5-1, IEC 61000-4-4)
	Surge Test (IEC 61800-5-1, IEC 61000-4-5)
	Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6)
Operation/storage	Operation: -10°C ~ 50°C (temperature), 90% (humidity)
Operation/storage	Storage: -25°C ~ 70°C (temperature), 95% (humidity)
Vibration/shock immunity	International standard: IEC 61800-5-1, IEC 60068-2-6/IEC 61800-5-1, IEC 60068-2-27

8-5-4 Install CMC-MOD01 to VFD-CP2000

- 1. Switch off the power supply of VFD-CP2000.
- 2. Open the front cover of VFD-CP2000.
- 3. Place the insulation spacer into the positioning pin at Slot 1 (shown in Figure 3), and aim the two holes on the PCB at the positioning pin. Press the pin to clip the holes with the PCB (shown in Figure 4).
- 4. Screw up at torque 6~8 kg-cm / [5.21~6.94 in-lb.] / [0.6~0.8Nm] after the PCB is clipped with the holes (shown in Figure 5).

8-5-5 Communication Parameters for VFD-CP2000 Connected to Ethernet

When VFD-CP2000 is linking to Ethernet, please set up the communication parameters based on the table below. Ethernet master will be able to read/write the frequency word and control word of VFD-CP2000 after communication parameters setup.

Parameter	Function	Set value (Dec)	Explanation
00-20	Source of frequency command setting	8	The frequency command is controlled by communication card.
00-21	Source of operation command setting	5	The operation command is controlled by communication card.

Chapter 8 Option Cards | CP2000

Parameter	Function	Set value (Dec)	Explanation
09-30	Decoding method for communication	0	Decoding method for Delta AC motor drive
09-75	IP setting	0	Static IP(0) / Dynamic distribution IP(1)
09-76	IP address -1	192	IP address 192.168.1.5
09-77	IP address -2	168	IP address 192.168.1.5
09-78	IP address -3	1	IP address 192.168.1.5
09-79	IP address -4	5	IP address 192.168.1.5
09-80	Netmask -1	255	Netmask 255.255.255.0
09-81	Netmask -2	255	Netmask 255.255.255.0
09-82	Netmask -3	255	Netmask 255.255.255.0
09-83	Netmask -4	0	Netmask 255.255.255.0
09-84	Default gateway -1	192	Default gateway 192.168.1.1
09-85	Default gateway -2	168	Default gateway 192.168.1.1
09-86	Default gateway -3	1	Default gateway 192.168.1.1
09-87	Default gateway -4	1	Default gateway 192.168.1.1

8-5-6 Disconnecting CMC- MOD01 from VFD-CP2000

- 1. Switch off the power supply of VFD-CP2000.
- 2. Remove the two screws (shown in Figure 6).
- 3. Twist opens the card clip and inserts the slot type screwdriver to the hollow to prize the PCB off the card clip (shown in Figure 7).
- 4. Twist opens the other card clip to remove the PCB (shown in Figure 8).

8-5-7 Basic Registers

BR#	R/W	Content	Explanation
#0	R	Model name	Set up by the system; read only. The model code of CMC-MOD01=H'0203
#1	R	Firmware version	Displaying the current firmware version in hex, e.g. H'0100 indicates the firmware version V1.00.
#2	R	Release date of the version	Displaying the data in decimal form. 10,000s digit and 1,000s digit are for "month"; 100s digit and 10s digit are for "day". For 1 digit: 0 = morning; 1 = afternoon.
#11	R/W	Modbus Timeout	Default setting: 500 (ms)
#13	R/W	Keep Alive Time	Default setting: 30 (s)

8-5-8 LED Indicator & Troubleshooting

LED Indicators

LED	Status		Indication	How to correct it?
POWER Green	Croon	On	Power supply in normal status	
	Off	No power supply	Check the power supply	
LINK Green		On	Network connection in normal status	
	Green	Flashes	Network in operation	
		Off	Network not connected	Check if the network cable is connected

Troubleshooting

Abnormality	Cause	How to correct it?
POWER LED off	AC motor drive not powered	Check if AC motor drive is powered, and if the power supply is normal.
	CMC-MOD01 not connected to AC motor drive	Make sure CMC-MOD01 is connected to AC motor drive.
LINK LED off	CMC-MOD01 not connected to network	Make sure the network cable is correctly connected to network.
	Poor contact to RJ-45 connector	Make sure RJ-45 connector is connected to Ethernet port.
No module found	CMC-MOD01 not connected to network	Make sure CMC-MOD01 is connected to network.
	PC and CMC-MOD01 in different networks and blocked by network firewall.	Search by IP or set up relevant settings by AC motor drive keypad.
Fail to open CMC-MOD01 setup page	CMC-MOD01 not connected to network	Make sure CMC-MOD01 is connected to the network.
	Incorrect communication setting in DCISoft	Make sure the communication setting in DCISoft is set to Ethernet.
	PC and CMC-MOD01 in different networks and blocked by network firewall.	Conduct the setup by AC motor drive keypad.
Able to open CMC-MOD01 setup page but fail to utilize webpage monitoring	Incorrect network setting in CMC-MOD01	Check if the network setting for CMC-MOD01 is correct. For the Intranet setting in your company, please consult your IT staff. For the Internet setting in your home, please refer to the network setting instruction provided by your ISP.
Fail to send e-mail	Incorrect network setting in CMC-MOD01	Check if the network setting for CMC-MOD01 is correct.
	Incorrect mail server setting	Please confirm the IP address for SMTP-Server.

8-6 CMC-PD01

8-6-1 Features

- 1. Supports PZD control data exchange.
- 2. Supports PKW polling AC motor drive parameters.
- 3. Supports user diagnosis function.
- 4. Auto-detects baud rates; supports Max. 12Mbps.

8-6-2 Product Profile

- 1. NET indicator 2. POWER indicator
- 3. Positioning hole
- 4. AC motor drive connection port
- 5. PROFIBUS DP connection port
- 6. Screw fixing hole
- 7. Fool-proof groove

8-6-3 Specifications

PROFIBUS DP Connector

Interface	DB9 connector
Transmission method	High-speed RS-485
Transmission cable	Shielded twisted pair cable
Electrical isolation	500VDC

Communication

Message type	Cyclic data exchange
Module name	CMC-PD01
GSD document	DELA08DB.GSD
Company ID	08DB (HEX)
Serial transmission speed supported (auto-detection)	9.6Kbps; 19.2Kbps; 93.75Kbps; 187.5Kbps; 500Kbps; 1.5Mbps; 3Mbps; 6Mbps; 12Mbps (bit /per second)

Electrical Specification

Power supply voltage	5VDC (supplied by AC motor drive)
Insulation voltage	500VDC
Power consumption	1W
Weight	28g
Environment

	ESD(IEC 61800-5-1,IEC 61000-4-2)
Noiso immunity	EFT(IEC 61800-5-1,IEC 61000-4-4)
Noise minunity	Surge Teat(IEC 61800-5-1,IEC 61000-4-5)
	Conducted Susceptibility Test(IEC 61800-5-1,IEC 61000-4-6)
Operation /storage	Operation: -10ºC ~ 50ºC (temperature), 90% (humidity)
	Storage: -25°C ~ 70°C (temperature), 95% (humidity)
Shock / vibration resistance	International standards: IEC 61800-5-1, IEC 60068-2-6 / IEC 61800-5-1, IEC 60068-2-27

8-6-4 Installation

PROFIBUS DP Connector

PIN	PIN name	Definition
1	-	Not defined
2	-	Not defined
3	Rxd/Txd-P	Sending/receiving data P(B)
4	-	Not defined
5	DGND	Data reference ground
6	VP	Power voltage – positive
7	-	Not defined
8	Rxd/Txd-N	Sending/receiving data N(A)
9	-	Not defined

8-6-5 LED Indicator & Troubleshooting

There are 2 LED indicators on CMC-PD01. POWER LED displays the status of the working power. NET LED displays the connection status of the communication.

POWER LED

LED status	Indication	How to correct it?
Green light on	Power supply in normal status.	
Off	No power	Check if the connection between CMC-PD01 and AC motor drive is normal.

NET LED

LED status	Indication	How to correct it?
Green light on	Normal status	
Red light on	CMC-PD01 is not connected to PROFIBUS DP bus.	Connect CMC-PD01 to PROFIBUS DP bus.
Red light flashes	Invalid PROFIBUS communication address	Set the PROFIBUS address of CMC-PD01 between 1 ~ 125 (decimal)
Orange light flashes	CMC-PD01 fails to communicate with AC motor drive.	Switch off the power and check whether CMC-PD01 is correctly and normally connected to AC motor drive.

8-7 CMC-DN01

8-7-1 Functions

- 1. Based on the high-speed communication interface of Delta HSSP protocol, able to conduct immediate control to AC motor drive.
- 2. Supports Group 2 only connection and polling I/O data exchange.
- 3. For I/O mapping, supports Max. 32 words of input and 32 words of output.
- 4. Supports EDS file configuration in DeviceNet configuration software.
- 5. Supports all baud rates on DeviceNet bus: 125Kbps, 250Kbps, 500Kbps and extendable serial transmission speed mode.
- 6. Node address and serial transmission speed can be set up on AC motor drive.
- 7. Power supplied from AC motor drive.

8-7-2 Product Profile

8-7-3 Specifications

DeviceNet Connector

Interface	5-PIN open removable connector. Of 5.08mm PIN interval
Transmission method	CAN
Transmission cable	Shielded twisted pair cable (with 2 power cables)
Transmission speed	125Kbps, 250Kbps, 500Kbps and extendable serial transmission speed mode
Network protocol	DeviceNet protocol

AC Motor Drive Connection Port

Interface	50 PIN communication terminal
Transmission method	SPI communication
Terminal function	 Communicating with AC motor drive Transmitting power supply from AC motor drive
Communication protocol	Delta HSSP protocol

Electrical Specification

Power supply voltage	5VDC (supplied by AC motor drive)
Insulation voltage	500VDC
Communication wire power consumption	0.85W
Power consumption	1W
Weight	23g

Environment

	ESD (IEC 61800-5-1,IEC 61000-4-2)
Noice immunity	EFT (IEC 61800-5-1,IEC 61000-4-4)
Noise immunity	Surge Test (IEC 61800-5-1,IEC 61000-4-5)
	Conducted Susceptibility Test (IEC 61800-5-1,IEC 61000-4-6)
Operation /storage	Operation: -10°C ~ 50°C (temperature), 90% (humidity)
	Storage: -25°C ~ 70°C (temperature), 95% (humidity)
Shock / vibration resistance	International standards: IEC 61800-5-1, IEC 60068-2-6 / IEC 61800-5-1, IEC 60068-2-27

DeviceNet Connector

PIN	Signal	Color	Definition	
1	V+	Red	DC24V	1
2	Н	White	Signal+	2
3	S	-	Earth	3 4
4	L	Blue	Signal-	5
5	V-	Black	0V	

8-7-4 LED Indicator & Troubleshooting

There are 3 LED indicators on CMC-DN01. POWER LED displays the status of power supply. MS LED and NS LED are dual-color LED, displaying the connection status of the communication and error messages.

POWER LED

LED status	Indication	How to correct it?
Off	Power supply in abnormal status.	Check the power supply of CMC-DN01.
Green light on	Power supply in normal status	

NS LED

LED status	Indication	How to correct it?
Off	No power supply or CMC-DN01 has not completed MAC ID test yet.	 Check the power of CMC-DN01 and see if the connection is normal. Make sure at least one or more nodes are on the bus. Check if the serial transmission speed of CMC-DN01 is the same as that of other nodes.
Green light flashes	CMC-DN01 is on-line but has not established connection to the master.	 Configure CMC-DN01 to the scan list of the master. Re-download the configured data to the master.
Green light on	CMC-DN01 is on-line and is normally connected to the master	
Red light flashes	CMC-DN01 is on-line, but I/O connection is timed-out.	 Check if the network connection is normal. Check if the master operates normally.
Red light on	 The communication is down. MAC ID test failure. No network power supply. CMC-DN01 is off-line. 	 Make sure all the MAC IDs on the network are not repeated. Check if the network installation is normal. Check if the baud rate of CMC-DN01 is consistent with that of other nodes. Check if the node address of CMC-DN01 is illegal. Check if the network power supply is normal.

MS LED

LED status	Indication	How to correct it?
Off	No power supply or being off-line	Check the power supply of CMC-DN01 and see if the connection is normal.
Green light flashes	Waiting for I/O data	Switch the master PLC to RUN status
Green light on	I/O data are normal	
Red light flashes	Mapping error	 Reconfigure CMC-DN01 Re-power AC motor drive
Red light on	Hardware error	 See the error code displayed on AC motor drive. Send back to the factory for repair if necessary.
Orange light flashes	CMC-DN01 is establishing connection with AC motor drive.	If the flashing lasts for a long time, check if CMC-DN01 and AC motor drive are correctly installed and normally connected to each other.

Chapter 8 Option Cards | CP2000

8-8 CMC-EIP01

8-8-1 Features

- 1. Supports Modbus TCP and Ethernet/IP protocol
- 2. MDI/MDI-X auto-detect
- 3. Baud rate: 10/100Mbps auto-detect mail alarm
- 4. AC motor drive keypad/Ethernet configuration
- 5. Virtual serial port

8-8-2 Product Profile

8-8-3 Specifications

Network Interface

Interface	RJ-45 with Auto MDI/MDIX	
Number of ports	1 Port	
Transmission method	IEEE 802.3, IEEE 802.3u	
Transmission cable	Category 5e shielding 100M	
Transmission speed	10/100 Mbps Auto-Detect	
Network protocol	ICMP, IP, TCP, UDP, DHCP, HTTP, SMTP, MODBUS OVER TCP/IP, EtherNet/IP, Delta Configuration	

Electrical Specification

Weight	25g
Insulation voltage	500VDC
Power consumption	0.8W
Power supply voltage	5VDC

Environment

Noise immunity	ESD (IEC 61800-5-1,IEC 61000-4-2)
	EFT (IEC 61800-5-1,IEC 61000-4-4)
	Surge Test (IEC 61800-5-1,IEC 61000-4-5)
	Conducted Susceptibility Test (IEC 61800-5-1,IEC 61000-4-6)
Operation/storage	Operation: -10°C ~ 50°C (temperature), 90% (humidity)
	Storage: -25°C ~ 70°C (temperature), 95% (humidity)
Vibration/shock immunity	International standard: IEC 61800-5-1, IEC 60068-2-6/IEC 61800-5-1, IEC 60068-2-27

8-8-4 Installation

Connecting CMC-EIP01 to Network

- 1. Turn off the power of AC motor drive.
- 2. Open the cover of AC motor drive.
- Connect CAT-5e network cable to RJ-45 port on CMC-EIP01 (See Figure 2).

RJ-45 PIN Definition

PIN	Signal	Definition	PIN	Signal	Definition	
1	Tx+	Positive pole for data transmission	5		N/C	
2	Tx-	Negative pole for data transmission	6	Rx-	Negative pole for data receiving	
3	Rx+	Positive pole for data receiving	7		N/C	8
4		N/C	8		N/C	

8-8-5 Connecting CMC-EIP01 to VFD-CP2000

- 1. Switch off the power of AC motor drive.
- 2. Open the front cover of AC motor drive.
- 3. Place the insulation spacer into the positioning pin at Slot 1 (shown in Figure 3), and aim the two holes on the PCB at the positioning pin. Press the pin to clip the holes with the PCB (see Figure 4).
- 4. Screw up at torque 6~8 kg-cm / [5.21~6.94 in-lb.] / [0.6~0.8Nm] after the PCB is clipped with the holes (see Figure 5).

8-8-6 Communication Parameters for VFD-CP2000 Connected to Ethernet

When CP2000 is connected to Ethernet network, please set up the communication parameters according to the table below. The Ethernet master is only able to read/write the frequency word and control word of VFD-CP2000 after the communication parameters are set.

Parameter	Function	Set value (Dec)	Explanation
00-20	Source of frequency command setting	8	The frequency command is controlled by communication card.
00-21	Source of operation command setting	5	The operation command is controlled by communication card.
09-30	Decoding method for communication	0	The decoding method for Delta AC motor drive
09-75	IP setting	0	Static IP(0) / Dynamic distribution IP(1)
09-76	IP address -1	192	IP address 192.168.1.5
09-77	IP address -2	168	IP address 192.168.1.5
09-78	IP address -3	1	IP address 192.168.1.5
09-79	IP address -4	5	IP address 192.168.1.5
09-80	Netmask -1	255	Netmask 255.255.255.0
09-81	Netmask -2	255	Netmask 255.255.255.0
09-82	Netmask -3	255	Netmask 255.255.255.0
09-83	Netmask -4	0	Netmask 255.255.255.0
09-84	Default gateway -1	192	Default gateway 192.168.1.1
09-85	Default gateway -2	168	Default gateway 192.168.1.1
09-86	Default gateway -3	1	Default gateway 192.168.1.1
09-87	Default gateway -4	1	Default gateway 192.168.1.1

8-8-7 Disconnecting CMC- EIP01 from VFD-CP2000

- 1. Switch off the power supply of VFD-CP2000.
- 2. Remove the two screws (see Figure 6).
- 3. Twist opens the card clip and inserts the slot type screwdriver to the hollow to prize the PCB off the card clip (see Figure 7).
- 4. Twist opens the other card clip to remove the PCB (see Figure 8).

8-8-8 LED Indicator & Troubleshooting

There are 2 LED indicators on CMC-EIP01. The POWER LED displays the status of power supply, and the LINK LED displays the connection status of the communication.

LED	S	tatus	Indication	How to correct it?
	On	Power supply in normal status		
FOWER	POWER Green	Off	No power supply	Check the power supply.
LINK Green	On	Network connection in normal status		
	Flashes	Network in operation		
		Off	Network not connected	Check if the network cable is connected.

LED I	ndicators
-------	-----------

Troubleshooting

Abnormality	Cause	How to correct it?	
POWER LED off	AC motor drive not powered	Check if AC motor drive is powered, and if the power supply is normal.	
	CMC-EIP01 not connected to AC motor drive	Make sure CMC-EIP01 is connected to AC motor drive.	
LINK LED off	CMC-EIP01 not connected to network	Make sure the network cable is correctly connected to network.	

Chapter 8 Option Cards | CP2000

Abnormality	Cause	How to correct it?	
LINK LED off	Poor contact to RJ-45 connector	Make sure RJ-45 connector is connected to Ethernet port.	
No communication card found	CMC-EIP01 not connected to network	Make sure CMC-EIP01 is connected to network.	
	PC and CMC-EIP01 in different networks and blocked by network firewall.	Search by IP or set up relevant settings by AC motor drive keypad.	
	CMC-EIP01 not connected to network	Make sure CMC-EIP01 is connected to the network.	
Fail to open CMC-EIP01 setup	Incorrect communication setting in DCISoft	Make sure the communication setting in DCISoft is set to Ethernet.	
page	PC and CMC-EIP01 in different networks and blocked by network firewall.	Conduct the setup by AC motor drive keypad.	
Able to open CMC-EIP01 setup page but fail to utilize webpage monitoring		Check if the network setting for CMC-EIP01 is correct. For the Intranet setting in your company, please consult your IT staff. For the Internet setting in your home, please refer to the network setting instruction provided by your ISP.	
	Incorrect network setting in CMC-EIP01	Check if the network setting for CMC-EIP01 is correct.	
Fail to send e-mail	Incorrect mail server setting	Please confirm the IP address for SMTP-Server.	

8-9 EMC-COP01

8-9-1 Position of terminal resistance

8-9-2 RJ-45 Pin definition

Pin	Pin name	Definition
1	CAN_H	CAN_H bus line (dominant high)
2	CAN_L	CAN_L bus line (dominant low)
3	CAN_GND	Ground/0V/V-
7	CAN_GND	Ground/0V/V-

8-9-3 Specifications

Interface	RJ-45
Number of ports	1 Port
Transmission method	CAN
Transmission cable	CAN standard cable
Transmission speed	1Mbps, 500Kbps, 250Kbps, 125Kbps, 100Kbps, 50Kbps
Communication protocol	CANopen

8-10 EMC-BPS01

	Terminals	Descriptions
		Input power: 24V±5%
		Maximum input current:0.5A
		Note:
		1) Do not connect control terminal +24V (Digital control signal common:
		SOURCE) directly to the EMC-BPS01input terminal 24V.
		2) Do not connect control terminal GND directly to the EMC-BPS01 input
	24V GND	terminal GND.
External Power		Function: When the motor drive is powered by the EMC-BPS01, all the
Supply		communications are open. All the communication cards and functions
Зирріу		below are supported.
		1. Read and write parameters.
		2. Warning messages can be displayed on the keypad.
		3. Every button on the keypad is operational except the RUN button.
		4. Analog inputs are effective
		5. Keep the communication open.
		6. Multi-function input terminals needs external power to work.
		The following functions are NOT supported.
		Relay out (including extension card), PG card and PLC function.

8-11 Delta Standard Fieldbus Cables

Delta Cables	Part Number	Description	Length
	UC-CMC003-01A	CANopen Cable, RJ45 Connector	0.3m
	UC-CMC005-01A	CANopen Cable, RJ45 Connector	0.5m
	UC-CMC010-01A	CANopen Cable, RJ45 Connector	1m
	UC-CMC015-01A	CANopen Cable, RJ45 Connector	1.5m
CANopen Cable	UC-CMC020-01A	CANopen Cable, RJ45 Connector	2m
	UC-CMC030-01A	CANopen Cable, RJ45 Connector	3m
	UC-CMC050-01A	CANopen Cable, RJ45 Connector	5m
	UC-CMC100-01A	CANopen Cable, RJ45 Connector	10m
	UC-CMC200-01A	CANopen Cable, RJ45 Connector	20m
DoviceNet Cable	UC-DN01Z-01A	DeviceNet Cable	305m
Devicemet Cable	UC-DN01Z-02A	DeviceNet Cable	305m
	UC-EMC003-02A	Ethernet/EtherCAT cable, Shielding	0.3m
	UC-EMC005-02A	Ethernet/EtherCAT cable, Shielding	0.5m
	UC-EMC010-02A	Ethernet/EtherCAT cable, Shielding	1m
Ethernet / EtherCAT	UC-EMC020-02A	Ethernet/EtherCAT cable, Shielding	2m
	UC-EMC050-02A	Ethernet/EtherCAT cable, Shielding	5m
	UC-EMC100-02A	Ethernet/EtherCAT cable, Shielding	10m
	UC-EMC200-02A	Ethernet/EtherCAT cable, Shielding	20m
	TAP-CN01	1 in 2 out, built-in 121Ω terminal resistor	1 in 2 out
CANopen / DeviceNet	TAP-CN02	1 in 4 out, built-in 121Ω terminal resistor	1 in 4 out
	TAP-CN03	1 in 4 out, RJ45 connector, built-in 121Ω terminal resistor	1 in 4 out
PROFIBUS Cable	UC-PF01Z-01A	PROFIBUS DP Cable	305m

[This page intentionally left blank]

Chapter 9 Specifications

- 9-1 230V Series
- 9-2 460V Series
- 9-3 575V Series
- 9-4 690V Series
- 9-5 Environment for Operation, Storage and

Transportation

9-6 Specification for Operation Temperature and

Protection Level

9-7 Derating of Ambient Temperature and Altitude

9-1 230V Series

		Frame			Α				В			С		0)		Е	
M	ode	I: VFDCP23	007	015	022	037	055	075	110	150	185	220	300	370	450	550	750	900
		Rated output capacity [kVA]	2	3	4	6	8.4	12	18	24	30	36	42	58	72	86	110	128
		Rated output current [A]	5	7.5	10	15	21	31	46	61	75	90	105	146	180	215	276	322
	uty	Applicable motor output [kW]	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
	ght Di	Applicable motor output [HP]	1	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100	120
	Ĕ	Overload tolerance					120%	of rated	l curren	t for 1 n	ninute d	uring ev	very 5 m	inutes				
		Max. output frequency [Hz]						5	99.00H	Z						4	00.00H	Z
ating		Carrier frequency [kHz]			2~1	5kHz (D	efault 8	kHz)			2	2~10kH	z (Defau	ult 6kHz)	2~9	(Hz (De 4kHz)	fault
Output Ra		Rated output capacity [kVA]	1.2	2	3.2	4.4	6.8	10	13	20	26	30	36	48	58	72	86	102
		Rated output current [A]	3	5	8	11	17	25	33	49	65	75	90	120	146	180	215	255
	ity	Applicable motor output [kW]	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	19	22	30	37	45	55	75
	nal Du	Applicable motor output [HP]	0.5	1	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100
	Norn	Overload tolerance					120% 160% o	of rated f rated o	current	for 1 m or 3 sec	inute du conds d	uring ev uring ev	ery 5 m rery 25 s	inutes; seconds	5			
		Max. output frequency [Hz]	599.00Hz 400.00Hz										z					
		Carrier frequency [kHz]	2~15kHz (Default 8kHz) 2~10kHz (Default 6kHz)								2~9kHz (Default 4kHz)							
		Input current [A] Light duty	6.4	9.6	15	22	25	35	50	65	83	100	116	146	180	215	276	322
ating		Input current [A] Normal duty	3.9	6.4	12	16	20	28	36	52	72	83	99	124	143	171	206	245
ut R		Rated voltage /					3	phase, A	AC 200	/~240V	(-15% ⁻	~ +10%), 50/60	Hz				
dul	0	perating voltage range								170~2	64Vac							
	Frequency tolerance 47~63Hz																	
		Efficiency [%]						97	.8							98	.2	
		Power Factor								>0	.98							
		Weight [Kg]			2.6± 0.3	8			5.4± 1			9.8± 1.5	5	38.5	± 1.5	6	4.8± 1.	5
		Cooling method	Nat coc	ural ling							Fan c	ooling						
	Braking chopper		Frame A, B, C, Built-in Frame D above, Optional															
	DC choke						-rame A	а, В, С, (Optiona	I 0. 1				Fra	ame D a	above, E	uilt-in, S	3%
		EMC Filter	1							Opti	onal							

9-2 460V Series

		Frame				Α					В			С		D	0
Mo Mo	odel odel	VFDCP43 VFDCP4E	007	015	022	037	040	055	075	110	150	185	220	300	370	450	550
		Rated output capacity [kVA]	2.4	3.3	4.4	6.8	8.4	10.4	14.3	19	25	30	36	48	58	73	88
		Rated output current [A]	3	4.2*	5.5*	8.5*	10.5	13*	18*	24*	32*	38*	45	60*	73*	91	110
	٦t	Applicable motor output [kW]	0.75	1.5	2.2	3.7	4	5.5	7.5	11	15	18.5	22	30	37	45	55
	aht di	Applicable motor output [HP]	1	2	3	5	5	7.5	10	15	20	25	30	40	50	60	75
		Overload tolerance	d tolerance 120% of rated current for 1 minute during every 5 minutes														
		Max.output frequency [Hz]							5	599.00H	z						
ating	Garrier frequency 2~15kHz (Def												:	2~10kH	z (Defau	ult 6kHz)
put ra		Rated output capacity [kVA]	2.2	2.4	3.2	4.8	7.2	8.4	10.4	14.3	19	25	30	36	48	58	73
Out		Rated output current [A]	1.7	3.0	4.0	6.0	9.0	10.5	12	18	24	32	38	45	60	73	91
	ıt∨	Applicable motor output [kW]	0.4	0.75	1.5	2.2	3.7	4	5.5	7.5	11	15	18.5	22	30	37	45
	nal dı	Applicable motor output [HP]	0.5	1	2	3	5	5	7.5	10	15	20	25	30	40	53	60
	Norn	Overload tolerance				1	120% of 60% of r	rated curated cur	urrent for rent for 3	1 minut 3 second	e during s during	every 5 every 2	minutes; 5 second	ls			
		Max.output frequency [Hz]	599.00Hz														
		Carrier frequency [kHz]	2~15kHz (Default 8kHz)									2~10kHz (Default 6kHz)					
		Input current [A] Light duty	4.3	6	8.1	12.4	16	20	22	26	35	42	50	66	80	91	110
ting		Input current [A] Normal duty	3.5	4.3	5.9	8.7	14	15.5	17	20	26	35	40	47	63	74	101
out re		Rated voltage / Frequency					3 pha	ase, 380	V~480V	AC [-15	% ~ +10	0%), 50/	60Hz				
lu	C	perating voltage range							323	3~528 V	AC						
		Frequency tolerance							4	7~63 H	Z						
		Efficiency [%]								97.8							
	Power factor									>0.98							
Weight [Kg]					2.6± 0.3					5.4± 1			9.8± 1.5	5	27	± 1	
		Cooling method	Na	tural coo	ling						Fan c	ooling					
		Braking chopper						ļ	Frame . Frame D	A, B, C,) above,	Built-in; Optiona	ıl					
		DC choke	Frame A, B, C, Optional; Frame D above, Built-in 3%														
							Fra	me A, B	C of VF	D	CP4EA-	: Buil	t-in;				
	EMC Filter						Fran	ne A, B, (I	C of VFD Frame D)C) above	P43A Optiona	_, no bu il	ilt-in;				

* It means the rated output current is for the models of Version B. (e.g. VFD015CP43B-21)

460V Series

	Frame		D		E F				(3		Н		
Ν	/lode	VFDCP43	750	900	1100	1320	1600	1850	2200	2800	3150	3550	4000	5000
		Rated output capacity [kVA]	120	143	175	207	247	295	367	422	491	544	613	773
		Rated output current [A]	150*	180	220	260*	310	370*	460	530	616	683	770	930
	ity	Applicable motor output [kW]	75	90	110	132	160	185	220	280	315	355	400	500
	ght du	Applicable motor output [HP]	100	120	150	175	215	250	300	375	425	475	536	675
	Liç	Overload tolerance				120% of r	ated curre	nt for 1 mir	nute during	every 5 m	ninutes			
		Max.output frequency [Hz]	599.00Hz						400.00Hz					
ating		Carrier frequency [kHz]	2~10kHz (6kHz)		2~9kH	lz (Defauli	t 4kHz)							
Output ra		Rated output capacity [kVA]	88	120	143	175	207	247	295	367	438	491	544	720
		Rated output current [A]	110	150	180	220	260	310	370	460	550	616	683	866
	uty	Applicable motor output [kW]	55	75	90	110	132	160	185	220	280	315	355	450
	nal d	Applicable motor output [HP]	75	100	125	150	175	215	250	300	375	425	475	600
	Non	Overload tolerance			120% of rated current for 1 minute during every 5 minutes; 160% of rated current for 3 seconds during every 25 seconds									
		Max.output frequency [Hz]	599.00Hz		400.00Hz									
		Carrier frequency [kHz]	2~10kHz (6kHz)		2~9kHz (Default 4kHz)									
		Input current [A] Light duty	150	180	220	260	310	370	460	530	616	683	770	930
ating		Input current [A] Normal duty	114	157	167	207	240	300	380	400	494	555	625	866
ut re	Ra	ated voltage / Frequency				3-phase	e, 380V~4	80 VAC (-	15% ~ +1	0%] · 50/6	50Hz			
du	C	Derating voltage range						323~528	3 VAC	-				
		Frequency tolerance						47~63	Hz					
		Efficiency [%]	97.8						98.2					
		Power factor	•					>0.9	8					
		Weight [Kg]	38.5±	1.5	64.8	± 1.5	86.5	± 1.5	134	l± 4		22	28	
		Cooling method Fan cooling												
ļ		Braking chopper					Fra	ne D abov	e, Optiona	1				
ļ		DC choke					⊢ram	e D above	, Built-in, 3	%				
		EIVIC FIITER					Frai	ne D abov	e, Optiona	1				

* It means the rated output current is for the models of Version B. (e.g. VFD015CP43**B**-21)

Efficiency Curve

Figure 1

Figure 2

9-3 575V Series

		Frame		А		В							
	Mo	odel VFDCP53-21	015	022	037	055	075	110	150				
	,	Rated output capacity [kVA]	3	4.3	6.7	9.9	12.1	18.6	24.1				
	duty	Rated output current [A]	3	4.3	6.7	9.9	12.1	18.7	24.2				
0	ht o	Applicable motor output [kW]	1.5	2.2	3.7	5.5	7.5	11	15				
atin	Lig	Applicable motor output [HP]	2	3	5	7.5	10	15	20				
ut re		Rated output capacity [kVA]	2.5	3.6	5.5	8.2	10	15.4	19.9				
tpu	, Jal	Rated output current [A]	2.5	3.6	5.5	8.2	10	15.4	20				
n o	brn	Applicable motor output [kW]	0.75	1.5	2.2	3.7	5.5	7.5	11				
*	ž	Applicable motor output [HP]	1	2	3	5	7.5	10	15				
	Carri	er frequency [kHz]		2~15kHz [Default 4kHz]									
		Input current [A] Light duty	3.8	5.4	10.4	14.9	16.9	21.3	26.3				
p		nput current [A] Normal duty	3.1	4.5	7.2	12.3	15	18	22.8				
ratir		Rated voltage / Frequency	3-phase, 525V~600 VAC [-15% ~ +10%] · 50/60Hz										
put		Operating voltage range	446~660 VAC										
Ē		Frequency tolerance	47~63 Hz										
Efficiency [%]			97 98										
Power factor						> 0.98							
Weight [Kg]				3± 0.3			4.8	± 1					
		Cooling method	Natural	cooling			Fan cooling						
		Braking chopper	Built-in										
		DC choke	Ontional										

9-4 690V Series

		Frame		()		[)	E			
	Mod	el VFDCP63	185	220	300	370	450	550	750	900	1100	1320
		Rated output capacity [kVA]	29	36	43	54	65	80	103	124	149	179
		Applicable motor output 690V [kW]	18.5	22	30	37	45	55	75	90	110	132
	duty	Applicable motor output 690V [HP]	25	30	40	50	60	75	100	125	150	175
	Light	Applicable motor output 575V [HP]	20	25	30	40	50	60	75	100	125	150
		Rated output current [A]	24	30	36	45	54	67	86	104	125	150
	[Overload tolerance			120%	of rated cu	rrent for 1 m	inute during) every 5 mi	nutes		
ing		Max.output frequency [Hz]					599.0	00Hz				
ut rat		Rated output capacity [kVA]	24	29	36	43	54	65	80	103	124	149
*Outpu		Applicable motor output 690V [kW]	15	18.5	22	30	37	45	55	75	90	110
	al duty	Applicable motor output 690V [HP]	20	25	30	40	50	60	75	100	125	150
	lorma	Rated output capacity 575V [kVA]	15	20	25	30	40	50	60	75	100	125
	~	Rated output current [A]	20	24	30	36	45	54	67	86	104	125
	ſ	Overload tolerance		120% of rated current for 1 minute during every 5 minutes; 160% of rated current for 3 seconds during every 25 seconds								
	ſ	Max.output frequency [Hz]	599.00Hz									
	Ca	rrier frequency [kHz]					2~9kHz(De	efault 4kHz)			
	- II	nput current [A] Light duty	29	36	43	54	65	81	84	102	122	147
gu	In	put current [A] Normal duty	24	29	36	43	54	65	66	84	102	122
rati	F	Rated voltage / Frequency			3-pl	nase, AC 5	25V~690V	(-15% ~ +1	0%) · 50/6	OHz		
out		Operating voltage range					446~75	59 VAC				
h		Frequency tolerance					47~6	3 Hz				
		Efficiency [%]					9	7				
		Power factor					>0	.98				
		Weight [Kg]		10±	1.5			39± 1.5			61± 1.5	
		Cooling method	Fan cooling									
		Braking chopper	Built-in Optional									
		DC choke		Opti	onal				Bui	lt-in		

The value of the carrier frequency is a factory setting. To increase the carrier frequency, the current needs to be decrease. See derating curve diagram of Pr.06-55 for more information.

- When a load is a surge load, use a higher level model. For Frame A, B and C, Model VFDXXXCPXXX-21, the enclosure type is IP20/ UL OPEN TYPE.
- For FRAME D and above, if the last two characters of the model are 00 then the enclosure type is IP00/ IP20/UL OPEN TYPE; if the last two characters of the model are 21, the enclosure type is IP20/ NEMA1/ UL TYPE1.
- *Factory default setting is Light Duty, user can select Normal Duty and Light Duty by Pr. 00-16.

690V Series

	Frame			F	(3		ŀ	1		
	Мос	tel VFDCP63	1600	2000	2500	3150	4000	4500	5600	6300	
		Rated output capacity [kVA]	215	263	347	418	494.5	534.7	678.5	776	
		Applicable motor output 690V [kW]	160	200	250	315	400	450	560	630	
	duty	Applicable motor output 690V [HP]	215	270	335	425	530	600	745	850	
	Light	Applicable motor output 575V [HP]	150	200	250	350	400	450	500	675	
		Rated output current [A]	180	220	290	350	430	465	590	675	
		Overload tolerance			120% of rated	current for 1 m	ninute during ev	very 5 minutes			
p	Max.output frequency [Hz] 599.00Hz										
t ratir		Rated output capacity [kVA]	179	215	239	347	402.5	442.7	534.7	776	
Dutpu	1	Applicable motor output 690V [kW]	132	160	200	250	315	355	450	630	
Ŷ	l dut	Applicable motor output 690V [HP]	175	215	270	335	425	475	600	850	
	lorma	Rated output capacity 575V [HP]	150	150	200	250	350	400	450	500	
	2	Rated output current [A]	150	180	220	290	350	385	465	675	
		Overload tolerance		120% of rated current for 1 minute during every 5 minutes; 160% of rated current for 3 seconds during every 25 seconds							
		Max.output frequency [Hz]				599.0	00Hz				
		Carrier frequency [kHz]			2~9k	Hz (Default 4	kHz)			2~9kHz (3kHz)	
-	I	nput current [A] Light duty	178	217	292	353	454	469	595	681	
ting	In	put current [A] Normal duty	148	178	222	292	353	388	504	681	
ut ra		Rated voltage / Frequency			3-phase, AC	C 525V~690V	(-15% ~ +10%	o) · 50/60Hz			
du		Operating voltage range				446~75	59 VAC				
		Frequency tolerance				47~6	i3 Hz				
		Efficiency [%]	ç)7			9	8			
		Power factor				>0.	.98				
		Weight [Kg]	88± 1.5 135± 4 243± 5								
		Cooling method	Fan cooling								
L		Braking chopper	Optional								
		DC choke	Built-in								

The value of the carrier frequency is a factory setting. To increase the carrier frequency, the current needs to be decrease. See derating curve diagram of Pr.06-55 for more information.

- When a load is a surge load, use a higher level model.
- For Frame A, B and C, Model VFDXXXCPXXX-21, the enclosure type is IP20/ UL OPEN TYPE.
- For FRAME D and above, if the last two characters of the model are 00 then the enclosure type is IP00/ IP20/UL OPEN TYPE; if the last two characters of the model are 21, the enclosure type is IP20/ NEMA1/ UL TYPE1.
- *Factory default setting is Light Duty, user can select Normal Duty and Light Duty by Pr. 00-16.

General Specifications

Ļ	Control Mode	Pulse-Width Modulation (PWM)
	Control Method	230V/460V Series: 1: V/F, 2: SVC, 3: PM 575V/690V Series: 1: V/F, 2: SVC
Ī	Starting Torque	Reach up to 150% above at 0.5Hz.
	V/F Curve	4 point adjustable V/F curve and square curve
	Speed Response Ability	5Hz (vector control can reach up to 40Hz)
Γ	Tanau a Linsit	Light duty: max. 130% torque current
	Torque Limit	Normal duty: max. 160% torque current
Γ	Torque Accuracy	±5%
		230V models: 599.00Hz (55kW and above: 400.00Hz)
S	Max. output frequency (Hz)	460V models: 599.00Hz (90kW and above: 400.00Hz)
istic		575/690V models: 599.00Hz
teri	Frequency Output Accuracy	Digital command:±0.01%, -10℃~+40℃, Analog command: ±0.1%, 25±10℃
rac	Output Frequency	Digital command: 0.01Hz
hai	Resolution	Analog command: 0.03 X max. output frequency/60 Hz (±11 bit)
U S	Overland Telerance	Normal duty: rated output current is 120% for 60 seconds, rated output current is 160% for 3 seconds
ltrc	Overload Tolerance	Light duty: rated output current is 120% for 60 seconds
Sor	Frequency Setting Signal	0~+10V, 4~20mA, 0~20mA
Ŭ	Accel./ ecal. Time	0.00~600.00/0.0~6000.0 seconds
		Momentary power loss ride thru, Speed search, Over-torque detection, Torque limit, 17-step speed (max),
		Accel/ ecal time switch, S-curve accel./ ecal., 3-wire sequence, Auto-Tuning (rotational, stationary),
	Main control function	Dwell,-Slip compensation, Torque compensation, JOG frequency, Frequency upper/lower limit settings,
		DC injection braking at start/stop, High slip braking, Energy saving control, MODOBUS communication
		(RS-485 RJ45, max. 5.2 Kbps)
		230V models: VFD185CP23 (included) and above use PWM control; VFD150CP23 and below use On/Off
	Fan Cantral	switch.
	Fan Control	400V models: VFD220CP43/4E (Included) and above use PVVN control; VFD185CP43/4E and below use
		575V / 600V models: PWM control
	Motor Protection	Electronic thermal relay protection
		230V/460V models
		Light duty: Over-protection for 200% rated current: current clamp: 130~135%
		Normal duty: Over-protection for 240%: current clamp: 170~175%
	Over-current Protection	575/690V models:
		Light duty: current clamp: 128~141%
S		Normal duty: Over-protection for 225%; current clamp: 170~175%
isti		230V models: drive will stop when DC-BUS voltage exceeds 410V
ter	Over veltage Protection	460V models: drive will stop when DC-BUS voltage exceeds 820V
Irac	Over-voltage Protection	575V models: drive will stop when DC-BUS voltage exceeds 1016V
Cha		690V models: drive will stop when DC-BUS voltage exceeds 1189V
on C	Over-temperature Protoction	Built-in temperature sensor
ect	Stall Provention	Stall provention during acceleration, deceleration, and running independently
rot	Postart After Instantaneous	Stall prevention during acceleration, deceleration and running independently
с.	Power Failure	Parameter setting up to 20 seconds
	Grounding Leakage Current Protection	Leakage current is higher than 50% of rated current of the AC motor drive
F	Short-circuit Current Rating	Per UL508C, the drive is suitable for use on a circuit capable of delivering not more than 100kA
	(SCCR)	symmetrical amperes (rms) when protected by fuses given in the fuse table.
	Certifications	

The max. output frequency will vary with the setting of carrier frequency, please refer to the description of Pr. 01-00.

Only 230V/460V models are complied with EAC certification. 575V/690V models are not yet for certified.

9-5 Environment for Operation, Storage and Transportation

Do NOT expose the AC motor drive in the bad environment, such as dust, direct sunlight, corrosive/inflammable gasses, humidity, liquid and vibration environment. The salt in the air must be less than 0.01mg/cm² every year.

	Installation location	IEC60364-1/IEC606	64-1 Pollution degree 2, Indoor use only						
		Storage	-25 °C ~ +70 °C						
	Temperature	Transportation	-25 °C ~ +70 °C						
	Temperature	Non-condensation	n, non-frozen						
		Operation	Max. 95%						
	Rated Humidity	Storage/	Max 05%						
	Rated Humaity	Transportation	Nax. 3570						
		No condense wate	No condense water						
		Operation/	86 to 106 kPa						
	Air Pressure	Storage	Storage Storage						
Environment		Transportation	70 to 106 kPa						
		IEC60721-3-3							
		Operation	Operation Class 3C3; Class 3S2						
	Pollution Level	Storage	Class 1C2; Class 1S2						
	1 Olidion Edver	Transportation	Class 2C2; Class 2S2						
		If the AC motor dri	If the AC motor drive is to be used under harsh environment with high level of contamination (e.g. dew,						
		water, dust), make	water, dust), make sure it is installed in an environment qualified for IP54 such as in a cabinet.						
	Altitude	Operation	If AC motor drive is installed at altitude 0~1000m, follow normal operation restriction. If it is install at altitude 1000~2000m, decrease 1% of rated current or lower 0.5° of temperature for every 100m increase in altitude. Maximum altitude for Corner Grounded is 2000m.Contact Delta for more information, if you need to use this motor drive at an altitude of 2000m or higher.						
Package Drop	Storage Transportation	ISTA procedure 1/	A (according to weight) IEC60068-2-31						
) (ib notion	1.0mm, peak to p	eak value range from	1 2Hz to 13.2 Hz; 0.7G~1.0G range from 13.2Hz to 55Hz; 1.0G range from 55Hz to 512						
Vibration	Hz. Comply with I	EC 60068-2-6							
Impact	IEC/EN 60068-2-2	27							
Operation Position	Max. allowed offs	wed offset angle $\pm 10^{\circ}$ (under normal installation position)							

9-6 Specification for Operation Temperature and Protection Level

Model	Frame	Top cover	Conduit box	Protection level	Operation temperature
	Frame A~C 230V: 0.75~30kW 460V: 0.75~37kW	Top cover removed	Standard	IP20/UL Open Type	230V&460V: ND:-10°C~50°C LD:-10°C~40°C 575V&690V: -10°C~50°C
VFDxxxxCP23x-21 VFDxxxxCP43x-21 VFDxxxxCP4Ex-21 VFDxxxxCP53x-21 VFDxxxxCP63x-xx	575V: 1.5~15kW 690V: 18.5~37kW	Standard with top cover	conduit plate	IP20/ UL Type1/ NEMA1	-10~40℃
	Frame D~H 230V: 37kW and above 460V: 45kW and above 690V: 45kW and above	N/A	With conduit box	IP20/UL Type1/NEMA1	-10~40 ℃
VFDxxxxCP23x-00 VFDxxxxCP43x-00 VFDxxxxCP63x-xx	Frame D~H 230V: 37kW and above 460V: 45kW and above 690V: 45kW and above	N/A	No conduit box	IP00 IP20/UL Open Type Only here is IP00, others are IP20	230V&460V: ND: -10°C~ 50°C LD: -10°C~40°C 690V: -10°C~50°C

NOTE: ND=Normal Duty; LD=Light Duty

9-7 Derating of Ambient Temperature and Altitude

Protection Level	Operating Environment
	When the AC motor drive is operating at the rated current and the ambient temperature
	has to be between -10 $^\circ C~$ ~ +40 $^\circ C$. When the temperature is over 40 $^\circ C$, for every
UL Type I / IP20	increase by 1 $^\circ\!\mathrm{C}$, decrease 2% of the rated current. The maximum allowable
	temperature is 60° C.
	When the AC motor drive is operating at the rated current and the ambient temperature
	has to be between -10 $^\circ C$ ~ +50 $^\circ C$. When the temperature is over 50 $^\circ C$, for every
	increase by 1 $^\circ\!\mathrm{C}$, decrease 2% of the rated current. The maximum allowable
	temperature is 60° C.
	If AC motor drive is installed at altitude 0~1000m, follow normal operation restriction. If
	it is installed at altitude 1000~3000m, decrease 2% of rated current or lower 0.5 $^\circ \! \mathbb{C}$ of
High Altitude	temperature for every 100m increase in altitude. Maximum altitude for Corner
	Grounded is 2000m. Contact Delta for more information, if you need to use this motor
	drive at an altitude of 2000m or higher.

[This page intentionally left blank]

Chapter 10 Digital Keypad

- 10-1 Descriptions of Digital Keypad
- 10-2 Function of Digital Keypad KPC-CC01
- 10-3 TPEditor Installation Instruction
- 10-4 Fault Code Description of Digital Keypad
 - KPC-CC01
- 10-5 Unsupported Functions when using TPEditior on
 - KPC-CC01 Keypad

10-1 Descriptions of Digital Keypad

KPC-CE01(Option)

KPC-CC01

Descriptions of Keypad Functions

Communication Interface

RJ-45 (socket)
 RS-485 interface;

Installation Method

- Embedded type and can be put flat on the surface of the control box. The front cover is water proof.
- Buy a MKC-KPPK model to do wall mounting or embedded mounting. Its protection level is IP66.
- The maximum RJ45 extension lead is 5 m (16ft)
- 4. This keypad can only be used on Delta's motor drive C2000, CH2000 and CP2000.

Key	Descriptions						
RUN	 Start Operation Key It is only valid when the source of operation command is from the keypad. It can operate the AC motor drive by the function setting and the RUN LED will be ON. It can be pressed again and again at stop process. When enabling "HAND" mode, it is only valid when the source of operation command is from the keypad. 						
STOP RESET	 Stop Command Key. This key has the highest processing priority in any situation. When it receives STOP command, no matter the AC motor drive is in operation or stop status, the AC motor drive needs to execute "STOP" command. The RESET key can be used to reset the drive after the fault occurs. For those faults that can't be reset by the RESET key, see the fault records after pressing MENU key for details. 						
FWD	 Operation Direction Key 1. This key only controls the operation direction, NOT for activate the drive. FWD: forward, REV: reverse. 2. Refer to the LED descriptions for more details. 						
ENTER	ENTER Key Press ENTER and go to the next level. If it is the last level then press ENTER to execute the command.						
ESC	ESC Key ESC key function is to leave current menu and return to the last menu. It is also functioned as a return key in the sub-menu.						
MENU	Press menu to return to main menu. Menu content: KPC-CE01 does not support function 5 ~13. 1. Parameter setup 7. Quick start 13. PC Link 2. Copy Parameter 8. Display Setup 3. Keypad Locked 9. Time Setup 4. PLC Function 10. Language Setup 5. Copy PLC 11. Startup Menu 6. Fault Record 12. Main Page						
	Direction: Left/Right/Up/Down 1. In the numeric value setting mode, it is used to move the cursor and change the numeric value. 2. In the menu/text selection mode, it is used for item selection.						

	Function Key
	1. The functions keys have factory settings and can be defined by users. The factory
	settings of F1 and F4 work with the function list below. For example, F1 is JOG function,
F1 F2	F4 is a speed setting key for adding/deleting user defined parameters.
	2. Other functions must be defined by TPEditor first. TPEditor software V1.40 or later is
F3 F4	available for download at:
	http://www.delta.com.tw/product/em/download/download_main.asp?act=3&pid=3&cid=3&
	<u>Ipid=3</u>
	3. Installation Instruction for TPEditor is on CH10-3 (page 10-20).
	HAND ON Key
	1. I his key is executed by the parameter settings of the source of Hand frequency and hand
	the digital keynod
	Ine uigital keypad.
HAND	2. Press HAND ON key at stop status, the setting will switch to hand nequency source and hand operation source. Press HAND ON key at operation status, it stops the AC mater
	drive first (display AHSP warning), and switch to hand frequency source and hand
	operation source
	Successful mode switching for KPC-CE01 "H/A" LED will be on: for KPC-CC01 it will
	display HAND mode/ AUTO mode on the screen.
AUTO	1. This key is executed by the parameter settings of the source of AUTO frequency and
	AUTO operation. The factory setting is the external terminal (source of operation is
	4-20mA).
	2. Press Auto key at stop status, the setting will switch to auto frequency source and auto
	operation source. Press Auto key at operation status, it stops the AC motor drive first
	(display AHSP warning), and switch to auto frequency source and auto operation source.
	3. Successful mode switching for KPC-CE01, "H/A" LED will be off; for KPC-CC01, it will
	display HAND mode/ AUTO mode on the screen

Descriptions of LED Functions

LED	Descriptions				
	Steady ON: operation indicator of the AC motor drive, including DC brake, zero spece				
		standby, restart after fault and speed search.			
KUN	Blinking: c	Irive is decelerating to stop or in the status of base block.			
	Steady OFF: drive doesn't execute the operation command				
STOP	Blinking: c	n. Stop Indicator of the AC motor drive.			
RESET	Steady OF	FF: drive doesn't execute "STOP" command			
	Operation	Direction LED			
	1. Green I	ight is on, the drive is running forward.			
	2. Red ligh	nt is on, the drive is running backward.			
FWD	3. Twinklin	ng light: the drive is changing direction.			
REV	Operation	Direction LED under Torque Mode ight is one that the torque command is > 0			
	2 Red lia	ight is on: the drive is running backward when the torque command is < 0 .			
	2. New light is on, the drive is running backward when the torque command is < 0 . 3. Twinkling light: the drive is running forward when the torque command is < 0 .				
	(Only KPC	C-CE01 supports this function)			
HAND	Setting ca	n be done during operation.			
	HAND LE	D: When HAND LED is on (HAND mode); when HAND LED is off (AUTO mode).			
	(Only KPC	C-CE01 supports this function)			
AUTO		n be done during operation.			
	RUN LED:	Condition/State			
		CANopen at initial			
	OFF	LED steady off			
	Blinking	CANopen at pre-operation			
CANopen ~"RUN"					
	Single	200 200 1000			
	nasn				
	ON	LED steady on			
	LED status	Condition/ State			
	OFF	No Error			
		One message fail			
	Single flash				
		200 1000			
		OFF OFF			
		Guarding fail or heartbeat fail			
CANopen ~"ERR"	Daulata				
	flash				
	Triple flash				
		ON 200 200 200 200 1000 F			
		ms ms ms			
	ON	Bus off			

10-2 Function of Digital Keypad KPC-CC01

- 1. Startup page can only display pictures, no flash.
- 2. When Power ON, it will display startup page then the main page. The main page displays Delta's default setting F/H/A/U, the display order can be set by Pr.00.03 (Startup display). When the selected item is U page, use left key and right key to switch between the items, the display order of U page is set by Pr.00.04 (User display).

Chapter 10 Digital Keypad | CP2000

Display Icon

1.Pr Setup 2.Copy Pr

3.Keypad Lock

1.Parameter Setup 2.Copy Parameter 3.Keypad Locked 4.PLC Function

Item 1~4 are the common items for KPC-CC01 &KPC-CE01

1. Parameter Setup

•		
	For example: Setup	source of master frequency command.
Pr setup ♦ 00:SYSTEM PARAM 01:BASIC PARAME 02:DIGITAL IN/	00- SYSTEM PARAME ♦ 00: Identity Co 01: Rated Curren 02: Parameter Re	Once in the Group 00 Motor Drive Parameter, Use Up/Down key to select parameter 20: Auto Frequency Command.
Press ENTER to select.	00- SYSTEM PARAME 20: Source of F 21: Source of OP 22: Stop Methods	When this parameter is selected, press ENTER key to go to this parameter's setting menu.
Press v to select a parameter group.	00-20 2 Analog Input 0~8 ADD	Use Up/Down key to choose a setting. For example: Choose "2 Analogue Input, then press the ENTER key.
press ENTER to go into that group.	00-20 END Analog Input	After pressing the ENTER key, an END will be displayed which means that the parameter setting is done.

6. Fault Record

8. Display Setup

10. Language Setup

7. Quick Start

9. Time Setup

11. Start-up

13. PC Link

12. Main page

2. Copy Parameter

Copy Pr	4 duplicates are p	rovided	
♦ 001:Manual_001 ►	The steps are shown in the example below.		
002:FileName01	Example: Saved in the motor drive.		
003:FileName02	Copy pr	1 Go to Copy Parameter	
003.1 lieivallie02	♦ 001:Manual_001►	2 Select the parameter group which needs to	
Press ENTER key to go to 001~004:	002: 003:	be copied and press ENTER key.	
content storage	001> ▼ 1: keypad->VFD 2: VFD->Keypad	 Select 1: Save in the motor drive. Press ENTER key to go to "Save in the motor drive" screen. 	

3. Keypad locked

4. PLC Function

PLC	When activate and	I stop PLC function, the PLC status will be displayed on	
	main page of Delta	default setting.	
 ◆1.Disable 2.PLC Run 3.PLC Stop 	PLC 1.Disable \$2.PLC Run 3.PLC Stop	Option 2: Enable PLC function	
Press Up/Down key to select PLC's function. Then press ENTER.	a	Factory setting on the main screen displays PLC/RUN status bar.	
	PLC 1.Disable 2.PLC Run ▲3.PLC Stop •	Option 3: Disable PLC function	
	PLC/STOP AUTO ♦F 60.00Hz H 0.00Hz U 540.0Vdc JOG 14:35:58	Factory setting on the main screen displays PLC/STOP status bar	
	PLC/STOP AUTO Warning PLFF Function defect	If the PLC program is not available in the control board, PLFF warning will be displayed when choosing option 2 or 3. In this case, select option 1: No Function to clear PLFF warning.	
The PLC funct		of KPC-CE01 can only displays:	
	1. PLC0 2. PLC1 3. PLC2		

5. Copy PLC

Copy PLC	4 duplicates are pr	ovided	
♦ 001:Manual_001 ►	The steps are show	vn in the example below.	
002:FileName01	Example: Saved in the motor drive.		
003:FileName02	Copy PLC	1 Go to Copy PLC	
005.1 lieivameoz	♦ 001:Manual_001►	2 Select a parameter group to copy then press	
	002:	ENTER	

Copy PLC ♦ 001:12/21/2014 ► 002: 003:	Press Right key to see the date of copying parameters.
Copy PLC ♦ 001:18:38:58 ◀ 002: 003:	Press Right key to see the time of copying parameters.

6. Fault record

Fault record ▼1:oL 2:ovd	Able to store 6 erro Able to store 20 erro The most recent er record to see its de	Able to store 6 error code (Keypad V1.02 and previous versions) Able to store 20 error code(Keypad V1.03 and later version) The most recent error record is shown as the first record. Select an error record to see its detail such as date, time, frequency, current, voltage, DCBU:			
Press ENTER to select. KPC-CE01 does not support this function.	t. t. t. t. t. t. t. t. t. t.	Press Up/Down key to select an error record. After selecting an error code, press ENTER to see that error record's detail			
	 Current: 79.57 Voltage: 189.2 BUS Voltage:409.5 1: oL Date: 01/20/2014 Time: 21:02:24 Outfreq: 32.61 	Press Up/Down key to see an error record's detail such as date, time, frequency, current, voltage, DCBus voltage.			
	Fault record 1:oL ♦ 2:ovd 3:GFF	Press Up/Down key to select an error record. After selecting an error code, press ENTER to see that error record's detail			
	2: ovd ♦ Current: 79.57 Voltage: 189.2 BUS Voltage:409.5 2: ovd ♦ Date: 01/20/2014 Time: 21:02:24 Outfreq: 32.61	Press Up/Down key to see an error record's detail such as date, time, frequency, current, voltage, DCBus voltage.			
	Fault actions of AC	motor drive are record and save to KPC-CC01. When			
	KPC-CC01 is remo	oved and apply to another AC motor drive, the previous fault			
	records will not be	deleted. The new fault records of the present AC motor			
	drive will accumula	drive will accumulate to KPC-CC01.			

7. Quick Start

Quick Start ▼1: V/F Mode		Description: 1. VF Mode
2: VFPG Mode 3: SVC Mode		V/F Mode :P00-07 \$01:Password De Items 1. Parameter Protection Password Input (P00-07)
Press ENTER to sele	ect.	02:Password Inp 03:Control Meth2.Parameter Protection Password Setting (P00-08)3.Control Mode (P00-10)

Outisk Otsut		4 Operatural of Operation (Door 44)
QUICK STATT:	01:Password Decoder	4. Control of Speed Mode (P00-11)
1. V/F Mode		5. Load Selection (P00-16)
2. SVC Mode	00.07	6. Carrier Frequency (P00-17)
3. My Mode	00-07	7. Source of the Master Frequency
	0	Command (AUTO) (P00-20)
	Password Decoder	8. Source of the Operation Command
	0~65535	(AUTO) (P00-21)
		9. Stop Method (P00-22)
		10 Digital Keypad STOP function (P00-32)
		11 Max Operation Frequency (P01-00)
		12 Max Frequency of Motor 1 (P01-01)
		13 Max Output Voltage Setting of Motor 1
		(D01 02)
		14 Mid point Frequency 1 of Motor 1
		(FUI-US) 15 Mid point Voltage 1 of Motor 1 (D01 04)
		15. Mid-point Voltage 1 of Motor 1 (P01-04)
		16. Mid-point Frequency 2 of Motor 1
		(P01-05)
		17. Mid-point Voltage 2 of Motor 1 (P01-06)
		18. Min. Output Frequency of Motor 1
		(P01-07)
		19. Min. Output Voltage of Motor 1 (P01-08)
		20. Output Frequency Upper Limit (P01-10)
		21. Output Frequency Lower Limit (P01-11)
		22. Accel. Time 1 (P01-12)
		23. Decel Time 1 (P01-13)
		24. Over-voltage Stall Prevention (P06-01)
		25. Derating Protection (P06-55)
		26. Software Brake Level (P07-00)
		27. Speed Tracking during Start-up (P07-12)
		28. Emergency Stop & Force to Stop
		Selection (P07-20)
		29. Filter Time of Torque Command
		(P07-24)
		30. Filter Time of Slip Compensation
		(P07-25)
		31. Torque Compensation Gain (P07-26)
		32. Slip Compensation Gain (P07-27)
	2. SVC Mode	
		Itoms
	SVC Mode : P00-07	1 Decemptor Protection Decoward Input
	A01-Decement Det	
	•01.Password De	(F00-07) 2 Decemptor Protection Recoverd
	02:Password Inp	2. Falancici Flucculul Fasswulu Satting (DOO 02)
	03:Control Meth	Control Mode (P00-10)
		Control of Speed Mede (D00-11)
	01: Password Decoder	F. Load Soloction (D00 16)
		5. Ludu Sciedliuli (FUU-10) 6. Carrier Frequency ($D00, 17$)
	00-07	7 Source of the Master Frequency
	0	Command (ALITO) (DOC 20)
	Decement	Source of the Operation Command
	Password Decoder	
	0~65535	(AUIU)(FUU-2I)
		9. Stop Wethod (MU-22)
		(MUU-32)
		11. IVIAX. Operation Frequency (P01-00)
		12. IVIAX. FIEQUENCY OF IVIOLOF 1 (PUT-U1) 12. Max. Output Valtage Setting of Matrix
		1. INIAX. OULPUT VOITAGE SETTING OF MOTOR
		I (FUI-U2) 14 Min Output Fraguancy of Mater 1
		(FUI-U/) 15 Min Output Voltage of Mater 1
		(10-10)
		16. Output Frequency Upper Limit

 (P01-10) 17. Output Frequency Lower Limit (P01-11) 18. Accel. Time 1 (P01-12) 19. Decel. Time 1 (P01-13) 20. Full-load Current of Induction Motor 1 (P05-01) 21. Rated Power of Induction Motor 1 (P05-02) 22. Rated Speed of Induction Motor 1 (P05-03) 23. Pole Number of Induction Motor 1 (P05-04) 24. No-load Current of Induction Motor 1 (P05-05) 25. Over-voltage Stall Prevention (P06-01) 26. Over-current Stall Prevention during Acceleration (P06-03) 27. Derating Protection (P06-55) 28. Software Brake Level (P07-00)
 Emergency Stop (EF) & Force to Stop Selection (P07-20) Filter Time of Torque Command (P07-24) Filter Time of Slip Compensation (P07-25)
32. Slip Compensation Gain (P07-27) 3. My Mode
My ModeItems\$01:02:03:ItemsClick F4 in parameter setting page, the parameter will save to My Mode. To delete or correct the parameter, enter this parameter and click the "DEL" on the bottom right corner.ItemsItems00-1000-10000-100Velocity Mode 0-300-1000-10000-10000-10000-10000-10000-10000-10000-10000-10000-10000-10000-10000-10000-10 <td< td=""></td<>
To correct or to delete this Pr., click DEL. My Mode :P00-10 \$01: Control Met 02: MAX Output 03: 3. To delete a parameter, go to My Mode and select a parameter which you need to delete. Press ENTER to enter the parameter

8. Display setup

	4	Contract	
Displ Setup		Contrast	
▼1:Contrast		±0	Use Up/Down key to adjust the setting
2:Back-Light		+0	value.
3:Text Color		-20 +20	
		Contrast	
Press ENTER to setting men	u.	+10	Then press ENTER.
		20 120	
		+20	
		Displ Setup	After selecting a setting value. Press
		2:Back-Light	ENTER to see screen's display after
		3:Text Color	contrast is adjusted to be +10.
		Contrast	
		-10	
			Then pless ENTER.
		-20 +20	
		Displ Setup	After select a setting value Press ENTER to
		▼1:Contrast	see screen's display result after contrast is
		3:Text Color	adjusted to be -10.
	2	2. Back-light	
		Displ Setup	
		1:Contrast	Press ENTER to go to Back Light Time
		♦2:Back-Light	Setting screen.
		3:Text Color	
		Back-Light Min	
		5	Use Up/Down key to adjust the setting
			value.
		0 10	

Back-Light Min 0 0 10	When the setting value is 0 Min, the back light will be steady on.
Displ Setup 1:Contrast \$2:Back-Light 3:Text Color	When the setting value is 10 Min, the backlight will be off in 10 minutes.

9. Time setting

Time setup 2009/01/01 :::	Time Setup 2014/01/01 00 : 00 : 00	Use Up/Down key to set up Year		
Use Left/Right key to select Year, Month, Day, Hour, Minute or Second to set up	Time Setup 2014/01/01 00 : 00 : 00	Use Up/Down key to set up Month		
	Time Setup 2014/01/01 00 : 00 : 00	Use Up/Down key to set up day		
	Time Setup 2014/01/01 21 : 00 : 00	Use Up/Down key to set up hour		
	Time Setup 2014/01/01 21 : 12 : 00	Use Up/Down key to set up Minute		
	Time Setup 2014/01/01 21 : 12 : 14	Use Up/Down key to set up Second		
	Time Setup END	After setting up, press ENTER to confirm the setup.		
	When the digital keypad is removed, the time setting will be in standby status			
	for 7 days. After this period, the time needs to be reset.			

10. Language setup

Language	Language setting option is displayed in the language of the user's choice. Language setting options:			
2:繁體中文	1.	English	5.	Русский
3:简体中文	2.	繁體中文	6.	Español
Use Up/Down key to select	3.	简体中文	7.	Português
language, than press ENTER.	4.	Türkçe	8.	français

11. Start-up

12. Main page

Main Page	1. Default page
 ▼1.Default 2.User Define 	▲ F 60.00Hz H 0.00Hz u 540.0Vdc
Default picture and editable picture are available upon selection. Press ENTER to select.	 F 600.00Hz >>> H >>> A >>> U (circulate) User Defined: optional accessory is require (TPEditor & USB/RS-485 Communication Interface-IFD6530) Install an editing accessory would allow users to design their own start-up page. If editor accessory is not installed, "user defined" option will display a blank page. Freq. 60.00Hz Current 123.45A DC BUS 543.21Vdc
	USB/RS-485 Communication Interface-IFD6530 Please refer to Chapter 07 Optional Accessories for more detail. <u>TPEditor</u> Go to Delta's website to download TPEditor V1.40 or later versions. <u>http://www.delta.com.tw/product/em/download/download_main.asp?act=3</u> <u>&pid=3&cid=3&tpid=3</u> Installation Instruction of TPEditor is on Chapter 10-3

Chapter 10 Digital Keypad | CP2000

13. PC Link

DOLINK	1.	TPEditor: This function	on allows users to connect the	keypad to a
		computer then to dow	vnload and edit user defined pa	ages.
2. VFDSoft		DOLink		
		Waiting	Click ENTER to g	o to <waiting th="" to<=""></waiting>
		0.0/	connect to PC>	
		0%		
	In	n TPEditor, choose <co< th=""><th>ommunication>, then choose "</th><th>Write to HMI"</th></co<>	ommunication>, then choose "	Write to HMI"
	File)	17 5453 Veredy, Complet); Objecti(), Local Page Entrop(); Objecti() 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LettergelΩ (Communication) Factor, Wedewol0 Height The State St	HT
	3	« 🗛 🖓 🖓 🖓		III TP Page -0 -1 BoorPage
		Output cument ###. # PID terrest 0		
	Y		n	
				Property
	×.99		nia Type DELTA VPD-C lower Makine Type VPD-C Royfiel	2 W - H 3 H - ²⁰ M -
	С	hoose <yes> in the <</yes>	Confirm to Write> dialogue box	κ.
		Sen 2 22 Endo 17 Editor 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	entingelle Communicated B. Tanlard, Windowski Brahavia a man Brahavian W / () / () / () / () () () () () () () () () () () () ()	
	3	« (are) K-axis	8)	10 TP Page 0 -1 -Box Page
		Output cument ###.#		
		COVVINUUND HH:MM:SS TRA	Are you sure to write to TP?	
	1.			Property
	2.97 (6	Y1 Den A. Cart	ner Type DELTA VFD-C lavens Mackae Type VFD-C beyful BEREF DELTA VFD-C lavens Mackae Type VFD-C beyful	S → → + 1 → 1 → 10027
		PC Link		
		Receiving	Start downloading pages	to edit KPC-CC01.
		28%		
		PC Link		
		Completed	Download completed	
		100%		
	2.	VFDSoft: this functior	n allows user to link to the VFD	Soft Operating
		software then to uploa	ad data	-
		Copy parameter 1~4	in KPC-CC01	
		Connect KPC-CCO1	to a computer	
		PC Link	Start downloading page	s to edit to
		▲2. VFDSoft	KPC-CC01	

PC Link 1: 2170 Receiving 58%	Start to upload parameters to VFDSoft
PC Link 1: 3640 Completed 100%	Uploading parameter is completed
Before using the user de	fined starting screen and user defined main
screen, the starting scree	en setup and the main screen setup have to be
preset as user defined.	
If the user defined page i	is not downloaded to KPC-CC01, the starting
screen and the main scre	een will be blank.

Other display

When fault occurs, the menu will display:

- Press ENTER and start RESET. If still no response, please contact local distributor or return to the factory. To view the fault DC BUS voltage, output current and output voltage, press "MENU"→"Fault Record".
- 2. Press ENTER again, if the screen returns to main page, the fault is clear.
- 3. When fault or warning message appears, backlight LED will blinks until the fault or the warning is cleared.

Optional accessory: RJ45 Extension Lead for Digital Keypad

Part No.	Description	
CBC-K3FT	RJ45 extension lead, 3 feet (approximately 0.9m)	
CBC-K5FT	RJ45 extension lead, 5 feet (approximately 1.5 m)	
CBC-K7FT	RJ45 extension lead, 7 feet (approximately 2.1 m)	
CBC-K10FT	RJ45 extension lead, 10 feet (approximately 3 m)	
CBC-K16FT	RJ45 extension lead, 16 feet (approximately 4.9 m)	

Note: When you need to buy communication cables, buy non-shielded, 24 AWG, 4 twisted pair, 100 ohms communication cables.

10-3 TPEditor Installation Instruction

TPEditor can edit up to 256 HMI (Human-Machine Interface) pages with a total storage capacity of 256kb. Each page can edit 50 normal objects and 10 communication objects.

- 1) TPEditor: Setup & Basic Functions
 - 1. Run TPEditor V1.40 or later versions.

 Go to File (F) →Click on New. The Window below will pop up. At the device type, click on the drop down menu and choose DELTA VFD-C Inverter. At the TP type, click on the drop down menu and choose VFD-C Keypad. As for File Name, enter TPE0. Now click on OK.

New Project	
HMI <=> PLC	
Set Device Type	
DELTA VFD-C Inverter	•
ТР Туре	
VFD-C KeyPad	•
File Name	
TPEO	
OK Cancel	

 You are now at the designing page. Go to Edit (E) →Click on Add a New Page (A) or go to the TP page on the upper right side, right click once on TP page and choose Add to increase one more page for editing. The current firmware of Keypad is version1.00 and can support up to 4 pages.

- 4. Edit Startup Page
- 5. Static Text **A**. Open a blank page, click once on this button **A**, and then double click on that blank

page. The following windows will pop up.

🕼 Tpel) – Delta TPEditor			
File(F) Edit(E) View(V) Compile(C) Objects(O) Local Page Ze	finged.) Global Settings(3) Communication(M) Tools(T) #	Indow(W) Help(H)	
	論論 역 역 에 타 Store 권 - 인 For	žur 🔄	
💺 🖪 N 22 A 13 A 15 A 15 A 16 A 16 A 16 A 16 A 16 A 16		> O O O Ω	
🕂 🐡 🛛 🗛 🗚 🗛 🧍 🖉 🚖 🔥 Text Input	÷T	● ● ● ● ● ● ● ● ●	
			L. TP Due
Bool Face			0
			- Doot Page
		M	
· · · · · · · · · · · · · · · · · · ·	and text setting		
	e .	Frame Setting Single Frame	
<u>مسمعهم م</u>		Text Direction From Left to Right	
		Alignationt Align Left 💽	
		Align Top 💌	
		Font Setting	Powerty
		07. 0 0000	mBasic Info
	15 21		Frame Setting Single
			Text Direction From Left to Fig Host, Alignment Align Left
			Vert Alignment Align Top
			Pont Setting {Name: Time Net Text Input
28, Y 20 Static Text (28, 20) (W=32, H=16)	Device Type DELTA IA Product	Machine Type: TP01G	1.

6. Static Bitmap → Open a blank page, then click once on this button and then double click on that blank page. The following window will pop up.

D-	■ 建築①: Control denrow denrow001	- + I	≌₫		Co. TD Date
0 0 0 0 0 8 0 0 8	Control C	d muov015 d muov016 d muov016 d muov017 d muov017 d muov017 d muov018 d muov017 d muov019 d muov017 d muov019 d muov017 d muov019 d muov017 d muov019 d muov017 d muov012 d muov017 d muov012 d muov017 d muov012 d muov017 d muov012 d muov017 d muov021 d muov017 d muov022 d muov017 d muov023 d muov024 d muov026 d muov027	damov043 damov043 damov045 damov045 damov046 damov049 damov049 damov050 damov050 damov053 damov053 damov054	(None)	Boot Page
#36	▲ danov013 → domov014 ▲ danov014 ▲ danov014	danow027 danow041 danow029 danow042 Bibinapo (*.bup)	▲ damov055 ● damov055 ▼ 【監問① ▼ 【監問②		Property [C]Bittic Info [Diffusity Feed [Diffusity]

Please note that Static Bitmap setting support only images in BMP format. Now choose an image that you need and click open, then that image will appear in the Static Bitmap window.

7. Geometric Bitmap

→ As shown in the picture on the left side, there

are 11 kinds of geometric bitmap to choose. Open a new blank page then click once on a geometric bitmap icon that you need. Then drag that icon and enlarge it to the size that you need on that blank page.

8. Finish editing the keypad starting screen and select **Communication>Input User Defined Keypad Starting Screen.**

日 Demo X龍 - Delta TPEditor						- # ×
File(F) Edit(E) View(V) Compile(C) Objects(O) Local Page Settings(L) Glob	al Settings(G) Communication(M)	Tools(T) Window(W) Help(H)			
	💕 State 💽 Font Size	—				
単合計:(1) 単合計:(1)	0 W d	- († - (⊨ (A) -	A⊡AI] T Á ∄	🛓 🐴 Text Input	ΞT	1
					. TP Page	5 <u>2</u>
🕎 Boot Page					Boot Page	
T7 T7 C7 O'						
X-I-Z J-exis station						
X-avie						
n unio						1.00
					Property	
X126, Y53	Device Type: DELTA VFD-C Inverter	Machi	se Type: VFD-C KeyPa	d		LE 10:02
1 (19) (C) Yahoo奇 (2) (2) Inbox - A (2) 集銀橋	英文 2014工作	CorelDR	Delta TP	🖮 š 🔫 🖻 🙆 🍪 🖀	s 😼 🗊 🗈 🧐	2014/7/30

- 9. Downloading setting: Go to Tool > Communication. Set up communication port and speed of IFD6530.
- 10. Only three speed selections are available: 9600 bps, 19200 bps and 38400 bps.

11. When a dialogue box displayed on the screen asking to confirm writing or not, press buttons on the keypad to go to MENU, select PC LINK and then press ENTER and wait for few seconds. Then select YES on the screen to start downloading.

- 2) Edit Main Page & Example of Download
 - Go to editing page, select Edit to add one page or press the button ADD on the right hand side of the HMI page to increase number of pages to edit. This keypad currently support up to 256 pages.

🖽 Tpe0 - Delta TPEditor				
File(F) Edit(E) View(V) Compile(C) Objects(O) Local Page Settin	igs(L) Global Settings(G) Communication(M)	Tools(T) Window(W) Help(H)		
□ ☞ ▦ 륨 @ ◎ ☞ ⊻ 匝 匝 ₫ 🔒 📩 삶 ! •	🔍 🔍 🖷 🖶 State 🔄 🕑 Font Size			
🕴 🗄 🖬 📲 🛒 🚉 🛤 📲 🛛 K 🗛 N 😫 🧟 🎹 🕼	≛ % I 🥥 W 🛓	⊕ ⊕ Ar Ar Al () € A .	A Text Input	
			Property	rt rt rte m All
	Denice Time DEI TA UED CL	Madine True UED & Root		
	Device Type: DBLTA VPD-C Inventor	Machine Type: VFD-C KeyP		上午 10:21
😗 🔁 Yahoo 🖬 🜔 🧛 Inbox - A 🚞 🕮	邊櫃 📙 英文 🚺 2014工作	CorelDR Delta TP	👘 🗧 🗐 🖂 🔕 🐼 😵 🕒 👘 🌾 🕕	2014/7/30

2. On the bottom right-hand corner of the HMI, click on a page number to edit or go to VIEW >HMI page to start editing main page. As shown in the image, the following objects are available. From left to right: Static Text, ASCII Display, Static Bitmap, Scale, Bar Graph, Button, Clock Display, Multi-state bit map, Units, Numeric Input and 11 geometric bitmaps and lines of different width. The application of Static Text, Static Bitmap, and geometric bitmap is the same as the editing startup page.

3. Numeric/ASCII Display: To add a Numeric/ASCII Display object to a screen, double click on the object to set up Related Devices, Frame Setting, Fonts and Alignment.

Numeric/ASCII Dis	splay Setting				
\$2100			Frame Setting	No Frame	•
			Font Setting	5x8 💌	
Value Type	Unsigned	-	Alignment	Align Left 🛛 💌	
Value Length	16 Bits	-	🗖 Leading Zeros		
Integer Number	5	-	T Arithmetic		
Decimal Number	0	-	OK	Cancel	

Related Device: Choose the VFD Communication Port that you need, if you want to read output frequency (H), set the VFD Communication Port to \$2202. For other values, please refer to ACMD Modbus Comm. Address List.

	Refer Device	
C PLC	T Device Name \$	
@ VFD	Aksolute Addr. 2100	
	012345 01	(
Set PLC ID 1	6789AB Cle	ar
TP Port COM1 -	CDEF./	se

4. Scale Setting 📆 : On the Tool Bar, click on this 📅 for Scale Setting. You can also edit Scale Setting in the Property Window on the right hand side of your computer screen.

Scale Setting	
Scale Position Top	Font Setting
Scale Side Normal Direction	▼ 5x8 ▼
Value Length 16 Bits 💌	Main Scale 5
Max Value 100	Sub Scale 2
Min Value 0	Cancel

- a. Scale Position: Click on the drop down list to choose which position that you need to place a scale.
- b. Scale Side: Click on the drop down list to choose if you want to number your scale from smaller number to bigger number or from big to small. Click OK to accept this setting or click Cancel to abort.
- c. Font Setting: Click on the drop down list to choose the Font setting that you need then click OK to accept the setting or click Cancel to abort.
- d. Value Length: Click on the drop down to choose 16bits or 32 bits. Then click OK to accept the setting or click Cancel to abort.
- e. Main Scale & Sub Scale: In order to divide the whole scale into equal parts, key in the numbers of your choices for main scale and sub scale.
- f. Maximum value & Minimum Value are the numbers on the two ends of a scale. They can be negative numbers. But the values allowed to be input are limited by the length of value. For example, when the length of value is set to **be hexadecimal**, the maximum and the minimum value cannot be input as -4000.

Follow the Scale setting mentioned above; you will have a scale as shown below.

50 75 100

5. Bar Graph setting 🖹 :

Bar Graph Setti	ng
Refer Device	Direction Setting
\$2100	From Bottom to Top
Value Type	Unsigned
Value Length	16 Bits
Max Value	65535 OK
Min Value	0 Cancel

- a. Related Device: Choose the VFD Communication Port that you need.
- b. Direction Setting: Click on the drop down menu to choose one of the following directions: From Bottom to Top, From Top to Bottom, From Left to Right or From Right to Left.
- c. Maximum Value & Minimum Value: They define the range covered by the maximum value and minimum value. If a value is smaller than or equal to the minimum value, then the bar graph will be blank. If a value is bigger or equal to the maximum value, then the bar graph will be full. If a value is between minimum and maximum value, then the bar graph will be filled proportionally.
- 6. Button¹ : Currently this function only allows the Keypad to switch pages; other functions are not yet available. Text input function and Image inserted functions are not yet supported.

Double click on ¹ to open set up window.

Button Setting		
Button Type Page Jump	Page Jump Setting Page No	Frame Setting Single Frame
Write-in	0	Font Setting 5x8 Text Alignment Middle Middle
Function Key		Middle Middle
Value Length		Graph Input:
Value Type	C Before Writing C Reset	
Current State 0 💌	C After Writing C Set	[None] Bitmap Read
Total States	User Level 0	Bitmap Clear
Button Text		OK Cancel

<Button Type> allows users set up buttons' functions. <Page Jump> and <Constant Setting> are the only two currently supported functions.

A [Page Jump] function setting

- Page Jump setting: After you choose the Page Jump function in the drop down list, you will see this Page Jump Setting Menu
- <Function Key> allows you to assign functions to the following keys on the KPC-CC01 keypad: F1,

F2, F3, F4, Up, Down, Left and Right. Please note that the Up and Down keys are locked by TPEditor. These two keys cannot be programmed. If you want to program Up and Down keys, go to Tool \rightarrow Function Key Settings (F) \rightarrow Re-Define Up/Down Key(R).

Communication Settings(C)		
Function Key Setting(F)	Re-Define Up/Down Key(R)	
Page Size(S) Grid Setting(G)	三 正 三 三 三 三 二 二 二 二	
Language Setting(L)		TP Page

• Button Text: This function allows user to name buttons. For example, key in <Next Page> in the empty space, a button will have the wording <Next Page> displayed on it.

B [Constant setting] function

This function is to set up the memory address' value of the VFD or PLC. When pressing the <function button> set up in before, a value will be written to the memory address of the <Constant Setting>. This function can be used as initializing a variable.

Button Type	onstant Setting	Constant Setting	Frame Setting Sin	gle Frame 💌
Write-in Read	\$211A		Font Setting 5x1	Bitmap Alignment
Function Key	F3 •		Middle	Middle
Value Length	16 Bits 💌		Graph Input:	
Value Type	Unsigned 💌	C Before Writing		
Cunrent State	0 💌	C After Writing C Set	[None]	Pitran Dend
Total States	1	User Level 0		Bitmap Clear
Button Text			OK	Cancel

 Clock Display Setting : The setup window of the Clock Display is shown as the image below. Time, Day or Date can be displayed on the keypad.

Open a new file and click once in that window, you will see the following

In the clock display setting, you can choose to display Time, Day or Date on the Keypad. To adjust time, go to #9 on the Keypad's menu. You can also adjust Frame Setting, Font Setting and Alignment.

Clock Display Setting					
	Frame Setting	No Frame	•		
	Font Setting	Align Left	•		
Time Association	Alignment	5x8	•		
💿 TP Time	• Time	C Day C Date			
C PLC Time	OK	Cancel			

8. Multi-state bitmap : The setup window of the multi-state is shown as the image below. This object reads the bit's property value of the PLC. It defines what image or wording is when this bit is 0 or when this bit is 1. Set the initial status to be 0 or 1 to define the displayed image or wording.

M0]	Graph Input:	
Bit C Value Value Type Value Length	[None]	Bitmap Read Bitmap Clear
Total States 2	Text Input	Font Setting

9. Unit Measurement ¹ Click once on this Button:

Open a new file and double click on that window, you will see the following

Units Setting			
Metrology Type	Time		
Unit Name	ms		
OK	Cancel		

Choose from the drop down list the Metrology and the Unity Name that you need.

As for Metrology, you have the following choices Length, Square Measure, Volume/Solid Measure, Weight, Speed, Time and Temperature. The unit name changes automatically when you change metrology type.

10. Numeric Input Setting

This menu allows you to provide parameters or communication ports and to input numbers.

Click once on this button	

Open a new file and double click on that window, you will see the following:

Numeric Input Se	tting			
Refer Device Write ┌─ Read		OutLine Setting Frame Setting Font Setting	No Frame	·
Function Key		Hori. Alignment Vert. Alignment Call Setting	Middle Middle	•
Value Type	Unsigned 💌	⊢ Call		
Value Length Value Setting Integer Number Decimal Number	16 Bits • 5 • 0 •	C After Writing	g 🕜 Reset	
Limit Setting Min Value	0	User Level	0 💌	
Max Value	65535	OK	Cancel	1

- Related Device: There are two blank spaces to fill in, one is <Write> and another one is <Read>.
 Input the numbers that you want to display and the corresponding numbers of a parameter and that of a communication port. For example, input 012C to Read and Write Parameter P01-44.
- b. Outline Setting: The Frame setting, Font setting, Vertical Alignment and Horizontal Alignment are the same as mentioned before. Click on the drop down menu and choose the setting that you need.
- c. Function key: The setting here allows you to program keys on the keypad. Press the key on the menu then the corresponding key on the keypad will start to blink, then press Enter to confirm the setting.
- d. Value Type & Value Length: These two factors influence the range of the Minimum and Maximum Value of the Limit Setting. Please note that the corresponding supporting values for CP2000 have to be 16bits. The 32bits values are not supported.
- e. Value Setting: This part is set automatically by the keypad itself.
- f. Limit Setting: Input the range the security setting here.
- g. For example, if you set Function Key as F1, Minimum Value as 0 and Maximum Value as 4, then press F1 on Keypad. Then you can press Up and Down key on the keypad to increase or decrease the value. Press Enter Key on the keypad to confirm your setting. You can also go to parameter table 01-44 to verify if your input value is correct.
- 11. Download TP Page: Press Up or Down key on the keypad until you reach #13 PC Link.

Then press Enter on the keypad and you will see the word "Waiting" on keypad's screen. Now choose a page that you have created then go to Communication (M) \rightarrow Write to TP(W) to start downloading the page to the keypad

When you see the word Completed on the keypad's screen, that means the download is done.

Then you can press ESC on the keypad to go back to the menu of the keypad.

10-4 Digital Keypad KPC-CC01 Fault Codes and Descriptions

Following fault codes and description are for digital keypad KPC-CC01 with version V1.01 and version higher.

LCM Display *	Description	Corrective Actions
Fault FrEr kpdFlash Read Er	Keypad flash memory read error	 An error has occurred on keypad's flash memory. 1. Press RESET on the keypad to clear errors. 2. Verify what kind of error has occurred on keypad's flash memory. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your authorized local dealer.
Fault FSEr kpdFlash Save Er	Keypad flash memory save error	 An error has occurred on keypad's flash memory. 1. Press RESET on the keypad to clear errors. 2. Verify if there's any problem on Flash IC. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your authorized local dealer.
Fault FPEr kpdFlash Pr Er	Keypad flash memory parameter error	 Errors occurred on parameters of factory setting. It might be caused by firmware update. 1. Press RESET on the keypad to clear errors. 2. Verify if there's any problem on Flash IC. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
Fault VFDr Read VFD Info Er	Keypad flash memory error when read AC drive data	 Keypad can't read any data sent from VFD. Verify if the keypad is properly connect to the motor drive by a communication cable such as RJ-45. Press RESET on the keypad to clear errors. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
Fault CPUEr CPU Error	Keypad CPU error	 A Serious error has occurred on keypad's CPU. 1. Verify if there's any problem on CPU clock? 2. Verify if there's any problem on Flash IC? 3. Verify if there's any problem on RTC IC? 4. Verify if the communication quality of the RS485 is good? 5. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.

Chapter 10 Digital Keypad | CP2000

Warning Code

LCM Display *	Description	Corrective Actions
HAND Warning CE01 Comm Command Er	Modbus function code error	 Motor drive doesn't accept the communication command sent from keypad. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. If none of the solution above works, contact your local authorized dealer.
HAND Warning CE02 Comm Address Er	Modbus data address error	 Motor rive doesn't accept keypad's communication address. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. If none of the solution above works, contact your local authorized dealer.
HAND Warning CE03 Comm Data Error	Modbus data value error	 Motor drive doesn't accept the communication data sent from keypad. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. If none of the solution above works, contact your local authorized dealer.
Hand Warning CE04 Comm Slave Error	Modbus slave drive error	 Motor drive cannot process the communication command sent from keypad. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
HAND Warning CE10 KpdComm Time Out	Modbus transmission time-Out	 Motor drive doesn't respond to the communication command sent from keypad. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
Warning TPNO TP No Object	Object not supported by TP Editor	 Keypad's TP Editor uses unsupported object. 1. Verify how the TP editor should use that object. Delete unsupported object and unsupported setting. 2. Re-edit the TP editor and then download it. If none of the solution above works, contact your local authorized dealer.

Fault Occurred during Setup

When pressing the ENTER button on the KPC-CC01 keypad, a fault has occurred and a fault code such as ERR3 will pop up due to unable to execute the command.

Take copying parameters and copying PLC as two examples.

% The information in this chapter is only applicable to v1.01 and above of KPC-CC01 keypad.

File Copy Setting Fault Description

LCM Display *	Description	Corrective Actions
001> P00-00 ERR1 Read Only	Parameter and file are read only	The property of the parameter/file is read-only and cannot be written to. 1. Verify the specification on the user manual. If the solution above doesn't work, contact your local authorized dealer.
001> P00-00 ERR2 Write Fail	Fail to write parameter and file	An error occurred while write to a parameter/file. 1. Verify if there's any problem on the Flash IC. 2. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above work, contact your local authorized dealer.
001> P00-00 ERR3 VFD Running	AC drive is in operating status	A setting cannot be made while motor drive is in operation. 1. Verify if the drive is not in operation. If the solution above doesn't work, contact your local authorized dealer.
001> P00-00 ERR4 Pr Lock	AC drive parameter is locked	A setting cannot be made because a parameter is locked. 1. Verify if the parameter is locked or not. If it is locked, unlock it and try to set up the parameter again. If the solution above doesn't work, contact your local authorized dealer.
001> P00-00 ERR5 Pr Changing	AC drive parameter changing	A setting cannot be made because a parameter is being modified. 1. Verify if the parameter is being modified. If it is not being modified, try to set up that parameter again. If the solution above doesn't work, contact your local authorized dealer.
001> P00-00 ERR6 Fault Code	Fault code	A setting cannot be made because an error has occurred on the motor drive. 1. Verify if there's any error occurred on the motor drive. If there isn't any error, try to make the setting again. If the solution above doesn't work, contact your local authorized dealer.
001> P00-00 ERR7 Warning Code	Warning code	A setting cannot be made because of a warning message given to the motor drive. 1. Verify if there's any warning message given to the motor drive. If the solution above doesn't work, contact your local authorized dealer.

Chapter 10 Digital Keypad | CP2000

LCM Display *	Description	Corrective Actions
001> P00-00 ERR8 Type Dismatch	File type mismatch	Data need to be copied are not same type, so the setting cannot be made. 1. Verify if the products' serial numbers need to be copied fall in the same category. If they are in the same category, try to make the setting again. If the solution above doesn't work, contact your authorized dealer.
001> P00-00 ERR9 Password Lock	File is locked with password	 A setting cannot be made, because some data are locked. 1. Verify if the data are unlocked or able to be unlocked. If the data are unlocked, try to make the setting again. 2. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
001> P00-00 ERR10 Password Fail	File is locked with password	 A setting cannot be made because the password is incorrect. 1. Verify if the password is correct. If the password is correct, try to make the setting again. 2. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
001> P00-00 ERR11 Version Fail	File version mismatch	A setting cannot be made, because the version of the data is incorrect. 1. Verify if the version of the data matches the motor drive. If it matches, try to make the setting again. If none of the solution above works, contact your local authorized dealer.
001> P00-00 ERR12 VFD Time Out	AC drive copy function time-out	 A setting cannot be made, because data copying timeout expired. 1. Redo data copying. 2. Verify if copying data is authorized. If it is authorized, try again to copy data. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.

* The content in this chapter only applies on V1.01 and above of KPC-CC01 keypad.

10-5 Unsupported Functions when using TPEditior on KPC-CC01

Keypad

1. Local Page Setting and Global Setting functions are not supported.

Tpe0 - Delta TPEditor		No. of Concession, Name of Street, or other		0.0
Ele Edit View Compile Object	Local Page Setting Global Setting	Communication Iool Window Help		
		🗑 📴 State 🔹 Fort Size	+ Text Input	0 ‡ T
原金新闻 雙金新闻 🔍	AN 🛛 🕾 🕿 🖇 🕄 🔘	A 🛓 🕆 🕸 A A A A A A A		
100000000	90			

2. [Communication] \rightarrow [Read from TP] functions are not supported.

E Tpe0 - Delta TPEditor		
File Edit View Compile Object Local Page Setting Global Setting Communication Iool V	(ndow Help	
D 글 문 문 이 이 문 X 확 확 전 다 변 명 명 명 역 역 역 가 Sead from TP	Font Size • Text Input	0 ‡ T
🗏 🚊 💷 📲 🖷 🏭 📲 🛼 🗛 N 🖪 🗮 🚍 😵 🗹 🕥 🖉 🖉 Write to TP	Péá A	
191 Auge (Deutron A.		

3. In RTC Display Setting, the Refer Device cannot be modified.

RTC Display Setting			
Refer Device	Frame Setting	No Frame	
D0	Font Setting	5x8 💌	
Time Association	Alignment	Align Left 🗨	
C TP Time	• Time O	Day O Date	
C PLC Time	OK	Cancel	

[This page intentionally left blank]

This chapter provides summary of parameter settings for user to gather the parameter setting ranges, factory settings and set parameters. The parameters can be set, changed and reset by the digital keypad.

- 1) *N*: the parameter can be set during operation
- 2) For more detail on parameters, please refer to Ch12 Description of Parameter Settings.

00 Drive Parameters

B	NOTE	IM: Induction Mot	or; PM: Permai	nent Magnet Motor
---	------	-------------------	----------------	-------------------

Pr.	Explanation	Settings	Factory Setting
		4: 230V, 1HP (0.75kW)	
		5: 460V, 1HP (0.75kW)	1
		6: 230V, 2HP (1.5kW)	1
		7: 460V, 2HP (1.5kW)	1
		8: 230V, 3HP (2.2kW)	1
		9: 460V, 3HP (2.2kW)	1
		10: 230V, 5HP (3.7kW)	1
		11: 460V, 5HP (3.7kW)	1
		12: 230V, 7.5HP (5.5kW)	1
		13: 460V, 7.5HP (5.5kW)	l
		14: 230V, 10HP (7.5kW)	1
		15: 460V, 10HP (7.5kW)	1
		16: 230V, 15HP (11kW)	1
00-00	Identity code of the AC motor drive	17: 460V, 15HP (11kW)	Read
00 00		18: 230V, 20HP (15kW)	only
		19: 460V, 20HP (15kW)	1
		20: 230V, 25HP (18.5kW)	1
		21: 460V, 25HP (18.5kW)	l
		22: 230V, 30HP (22kW)	l
		23: 460V, 30HP (22kW)	1
		24: 230V, 40HP (30kW)	1
		25: 460V, 40HP (30kW)	1
		26: 230V, 50HP (37kW)	l
		27: 460V, 50HP (37kW)	1
		28: 230V, 60HP (45kW)	1
		29: 460V, 60HP (45kW)	
		30: 230V, 75HP (55kW)	
		31: 460V, 75HP (55kW)	

Pr.	Explanation	Settings	Factory Setting
		32: 230V, 100HP (75kW)	
		33: 460V, 100HP (75kW)	
		34: 230V, 125HP (90kW)	
		35: 460V, 125HP (90kW)	
		37: 460V, 150HP (110kW)	
		39: 460V, 175HP (132kW)	
		41: 460V, 215HP (160kW)	
		43: 460V, 250HP (185kW)	
		45: 460V, 300HP (220kW)	
		47: 460V, 375HP (280kW)	
		49: 460V, 425HP (315kW)	
		51: 460V, 475HP (355kW)	
		53: 460V, 536HP (400kW)	
		93: 460V, 5HP (4.0kW)	
		505: 575V, 2HP (1.5kW)	
		506: 575V, 3HP (2.2kW)	
		507: 575V, 5HP (3.7kW)	
		508: 575V, 7.5HP (5.5kW)	
		509: 575V, 10HP (7.5kW)	
		510: 575V, 15HP (11kW)	
		511: 575V, 20HP (15kW)	
		612: 690V, 25HP (18.5kW)	
		613: 690V, 30HP (22kW)	
		614: 690V, 40HP (30kW)	
		615: 690V, 50HP (37kW)	
		616: 690V, 60HP (45kW)	
		617: 690V, 75HP (55kW)	
		618: 690V, 100HP (75kW)	
		619: 690V, 125HP (90kW)	
		620: 690V, 150HP (110kW)	
		621: 690V, 175HP (132kW)	
		622: 690V, 215HP (160kW)	
		626: 690V, 425HP (315kW)	
		628: 690V, 530HP (400kW)	
		629: 690V, 600HP (450kW)	
		631: 690V, 745HP (560kW)	
		632: 690V, 850HP (630kW)	
		686: 690V, 270HP (200kW)	
		687: 690V, 335HP (250kW)	

	Pr.	Explanation	Settings	Factory Setting
	00-01	Display AC motor drive rated current	Display by models	Read only
	00-02	Parameter reset	 0: No function 1: Parameter write protect 5: Reset KWH display to 0 6: Reset PLC (including CANopen Master Index) 7: Reset CANopen Index (Slave) 9: All parameters are reset to factory settings (base frequency is 50Hz) 10: All parameters are reset to factory settings (base frequency is 60Hz) 	0
N	00-03	Start-up display selection	 0: F (frequency command) 1: H (output frequency) 2: U (user defined, see Pr. 00-04) 3: A (output current) 	0
~	00-04	Content of multi-function display	 0: Display output current (A) (Unit: Amps) 1: Display counter value (c) (Unit: CNT) 2: Display actual output frequency (H.) (Unit: Hz) 3: Display DC-BUS voltage (v) (Unit: VDC) 4: Display U, V, W output voltage (E) (Unit: VAC) 5: Display output power angle (n) (Unit: deg) 6: Display output power in kW (P) (Unit: kW) 7: Display actual motor speed rpm (r) (Unit: rpm) 10: Display PID feedback (b) (Unit: %) 11: Display AVI1 in % (1.) (Unit: %) 12: Display AVI2 in % (3.) (Unit: %) 14: Display the temperature of IGBT (i.) (Unit: °C) 15: Display the temperature of capacitance (c.) (Unit: °C) 16: The status of digital input (ON / OFF) (i) 17: The status of digital output (ON / OFF) (o) 18: Multi-step speed (S) 19: The corresponding CPU pin status of digital input (d) 20: The corresponding CPU pin status of digital output (0.) 25: Overload count (0.00~100.00%) (o.) (Unit: %) 26: Ground fault GFF (G.) (Unit: %) 27: DC-BUS voltage ripple (r.) (Unit: VDC) 	3

	Pr.	Explanation	Settings	Factory Setting
			28: Display PLC data D1043 (C)	
			30: Display output of user defined (U)	
			31: Display Pr. 00-05 user gain (K)	
			34: Operation speed of fan (F.) (Unit: %)	
			36: Present operating carrier frequency of drive (J.)	
			(Unit: Hz)	
			38: Display drive status (6.)	
			41: KWH display (J) (Unit: kWH)	
			42: PID target value (h.) (Unit: %)	
			43: PID offset (o.) (Unit: %)	
			44: PID output frequency (b.) (Unit: Hz)	
			45: Hardware ID	
×	00-05	Coefficient gain in actual output frequency	0.00~160.00	1.00
	00.06	Software version	Pood only	Read
	00-06	Soltware version	Read only	only
	00.07	Parameter protection password	0~65535	0
×	00-07	input	0~4: the times of password attempts	0
			0~65535	
		Parameter protection password	0: No password protection / password is entered	
N	✓ 00-08 setting	setting	correctly (Pr. 00-07)	0
			1: Parameter is locked	
			0: VF (IM V/F control)	
	00-11	Control of speed mode	2: SVC (IM Sensorless vector control)	0
			0: Light duty	
	00-16	Load selection	1: Normal duty	0
			Model 230V 460V 575V *690V	
			Frequency [HP] [HP] [HP] [HP]	
			2~15KHz 1~20 1~25 2~10KHz 25~60 30~100	8
			2~9KHz 75~125 125~536 2~20 25~745	4
	00-17		*690V, initial value of 630kW [850HP] is 3	
	00-17	Carrier requercy	Normal duty	
			Model 230V 460V 575V *690V	
			Carrier [HP] [HP] [HP] [HP]	
			2~15KHz 0.5~15 0.5~20	8
			2~10KHz 20~50 25~75	6
			2~9KHz 60~100 100~475 2~20 25~745	4
	00-19	PLC command mask	bit 0: Control command by PLC force control	Read
			bit 1: Frequency command by PLC force control	only

	Pr.	Explanation	Settings	Factory Setting
		Source of master frequency	0: Digital keypad	
			1: RS-485 serial communication	
	00.00		2: External analog input (Pr. 03-00)	0
	00-20	command (AUTO)	3: External UP / DOWN terminal	0
			6: CANopen communication card	
			8: Communication card (not include CANopen card)	
			0: Digital keypad	
			1: External terminals.	
	00-21	Source of the operation command	2: RS-485 serial communication.	0
		(AUTO)	3: CANopen communication card	
			5: Communication card (not include CANopen card)	
,			0: Ramp to stop	
×	00-22	Stop method	1: Coast to stop	0
			0: Enable forward / reverse	
~	00-23	Control of motor direction	1: Reverse disable	0
			2: Forward disable	
		Memory of digital operator		Read
	00-24	(Keypad) frequency command	Read only	only
			bit 0~3: user defined decimal place	
			0000h 0000b: no decimal place	
			0001h 0001b: one decimal place	
			0002h 0010b: two decimal place	
			0003h 0011b: three decimal place	
			bit 4~15: user defined unit	
			000xh: Hz	
			001xh: rpm	
			002xh: %	
			003xh: kg	
,			004xh: m/s	
×	00-25	User defined characteristics	005xh: kW	0
			006xh: HP	
			007xh: ppm	
			008xh: 1/m	
			009xh: kg/s	
			00Axh: kg/m	
			00Bxh: kg/h	
			00Cxh: lb/s	
			00Dxh: lb/m	
			00Exh: lb/h	
			00Fxh: ft/s	

	Pr.	Explanation	Settings	Factory Setting
			010xh: ft/m	
			011xh: m	
			012xh: ft	
			013xh: degC	
			014xh: degF	
			015xh: mbar	
			016xh: bar	
			017xh: Pa	
			018xh: kPa	
			019xh: mWG	
			01Axh: inWG	
			01Bxh: ftWG	
			01Cxh: psi	
			01Dxh: atm	
			01Exh: L/s	
			01Fxh: L/m	
			020xh: L/h	
			021xh: m3/s	
			022xh: m3/h	
			023xh: GPM	
			024xh: CFM	
			xxxxh: Hz	
			0: No function	
			0~65535 (when Pr. 00-25 set to no decimal place)	
	00-26	Max. user defined value	0.0~6553.5 (when Pr. 00-25 set to 1 decimal place)	
			0.00~655.35 (when Pr. 00-25 set to 2 decimal place)	0
			0.000~65.535 (when Pr. 00-25 set to 3 decimal	
			place)	
	00.07	l la cu da fina di valua	Deedeelu	Read
	00-27	User defined value	Read only	Only
			bit0: Sleep function control bit	
			0: Cancel sleep function	
			1: Sleep function is equal to AUTO mode	
			bit1: Unit display control bit	
	00.00	Switching from Auto mode to Hand	0: Unit display is Hz	
~	00-20	mode	1: Unit display is equal to AUTO mode	
			bit2: PID control bit	
			0: Cancel PID control	
			1: PID control is equal to AUTO mode	

	Pr.	Explanation	Settings	Factory Setting
			bit3: Frequency source control bit	
			0: Frequency source set up by parameter,	
			multi-stage speed is preferred when it	
			started-up	
			1: Frequency source set up by Pr.00-30	
			whether multi-stage speed is started-up.	
			0: Standard HOA function	
			1: Switching Local / Remote, the drive stops	
			2: Switching Local / Remote, the drive runs as the	
			REMOTE setting for frequency and operation	
			status	
	00-29	LOCAL / REMOTE selection	3: Switching Local / Remote, the drive runs as the	0
			LOCAL setting for frequency and operation status	
			4: Switching Local / Remote, the drive runs as	
			LOCAL setting when switch to Local and runs as	
			REMOTE setting when switch to Remote for	
			frequency and operation status.	
			0: Digital keypad	
			1: RS-485 serial communication	
	00-30	Source of the master frequency command (HAND)	2: External analog input (Pr. 03-00)	0
			3: External UP / DOWN terminal	0
			6: CANopen communication card	
			8: Communication card (not include CANopen card)	
			0: Digital keypad	
		Source of the operation command	1: External terminals.	
	00-31		2: RS-485 serial communication.	0
			3: CANopen communication card	
			5: Communication card (not include CANopen card)	
~	00.33	Digital koyped STOP function	0: STOP key disable	0
~	00-32	Digital Reypau STOP TUnction	1: STOP key enable	0
×	00-48	Display filter time (Current)	0.001~65.535 sec.	0.100
*	00-49	Display filter time (Keypad)	0.001~65.535 sec.	0.100
	00-50	Software version (Date)	Read only	Read
	00-00			Only

01 Basic Parameters

	Pr.	Explanation	Settings	Factory Setting
			50.00~599.00Hz	
*	01-00	1-00 Max. operation frequency	Motor drive with 45kW(60HP)and above:	60.00 /
			0.00~400Hz	50.00
	01-01	Output frequency of motor 1	0.00~599.00Hz	60.00 / 50.00
			230V series: 0.0V~255.0V	200.0
			460V series: 0.0V~510.0V	400.0
	01-02	Output voltage of motor 1	575V series: 0.0V~637.0V	575.0
			690V series: 0.0V~765.0V	660.0
			230V series: 0.00~599.00Hz	3.00
			460V series: 0.00~599.00Hz	3.00
	01-03	Mid-point frequency 1 of motor 1	575V series: 0.00~599.00Hz	0.00
			690V series: 0.00~599.00Hz	0.00
			230V series: 0.0V~240.0V	11.0
			460V series: 0.0V~480.0V	22.0
*	01-04	Mid-point voltage 1 of motor 1	575V series: 0.0V~637.0V	0.0
			690V series: 0.0V~720.0V	0.0
			*690V, with 185kW and above: 10.0	
	01-05	Mid-point frequency 2 of motor 1	0.00~599.00Hz	1.50
			230V series: 0.0V~240.0V	5.0
			460V series: 0.0V~480.0V	10.0
*	01-06	Mid-point voltage 2 of motor 1	575V series: 0.0V~637.0V	0.0
			690V series: 0.0V~720.0V	0.0
			*690V, with 185kW and above: 2.0	
	01-07	Min. output frequency of motor 1	0.00~599.00Hz	0.50
			230V series: 0.0V~240.0V	1.0
	01 09	Min. output voltage of motor 1	460V series: 0.0V~480.0V	2.0
~	01-00	Nin. output voltage of motor 1	575V series: 0.0V~637.0V	0.0
			690V series: 0.0V~720.0V	0.0
	01-09	Start-up frequency	0.00~599.00Hz	0.50
*	01-10	Output frequency upper limit	0.00~599.00Hz	599.00
*	01-11	Output frequency lower limit	0.00~599.00Hz	0.00
			Pr. 01-45=0: 0.00~600.00 sec.	10.00
			Pr. 01-45=1: 0.0~6000.0 sec.	10.0
*	01-12	Accel. time 1	Motor drive with 230V/460V/690V, 22kW and above:	
			60.00 / 60.0	
			Motor drive with 690V, 160kW and above: 80.00 / 80.0	

	Pr.	Explanation	Settings	Factory Setting
			Pr. 01-45=0: 0.00~600.00 sec.	10.00
			Pr. 01-45=1: 0.0~6000.0 sec.	10.0
×	01-13	Decel. time 1	Motor drive with 230V/460V/690V, 22kW and above:	
			60.00 / 60.0	
			Motor drive with 690V, 160kW and above: 80.00 / 80.0	
			Pr. 01-45=0: 0.00~600.00 sec.	10.00
			Pr. 01-45=1: 0.0~6000.0 sec.	10.0
×	01-14	Accel. time 2	Motor drive with 230V/460V/690V, 22kW and above:	
			60.00 / 60.0	
			Motor drive with 690V, 160kW and above: 80.00 / 80.0	
			Pr. 01-45=0: 0.00~600.00 sec.	10.00
			Pr. 01-45=1: 0.0~6000.0 sec.	10.0
×	01-15	Decel. time 2	Motor drive with 230V/460V/690V, 22kW and above:	
			60.00 / 60.0	
			Motor drive with 690V, 160kW and above: 80.00 / 80.0	
			Pr. 01-45=0: 0.00~600.00 sec.	10.00
			Pr. 01-45=1: 0.0~6000.0 sec.	10.0
×	01-16	Accel. time 3	Motor drive with 230V/460V/690V, 22kW and above:	
_			60.00 / 60.0	
			Motor drive with 690V, 160kW and above: 80.00 / 80.0	
			Pr. 01-45=0: 0.00~600.00 sec.	10.00
			Pr. 01-45=1: 0.0~6000.0 sec.	10.0
×	01-17	Decel. time 3	Motor drive with 230V/460V/690V, 22kW and above:	
			60.00 / 60.0	
			Motor drive with 690V, 160kW and above: 80.00 / 80.0	
			Pr. 01-45=0: 0.00~600.00 sec.	10.00
,			Pr. 01-45=1: 0.0~6000.0 sec.	10.0
×	01-18	Accel. time 4	Motor drive with 230V/460V/690V, 22kW and above:	
			60.00 / 60.0	
			Motor drive with 690V, 160kW and above: 80.00 / 80.0	40.00
			Pr. 01-45=0: 0.00~600.00 sec.	10.00
,	04.40		Pr. 01-45=1: 0.0~6000.0 sec.	10.0
×	01-19	Decel. time 4	Motor drive with 230V/460V/690V, 22kW and above:	
			60.00 / 60.0	
			Motor drive with 690V, 160kW and above: 80.00 / 80.0	
			Pr. 01-45=0: 0.00~600.00 sec.	10.00
			Pr. 01-45=1: 0.0~6000.0 sec.	10.0
×	01-20	JOG acceleration time	Motor drive with 230V/460V/690V, 22kW and above:	
			60.00 / 60.0	
			Motor drive with 690V, 160kW and above: 80.00 / 80.0	

	Pr.	Explanation	Settings	Factory Setting
			Pr. 01-45=0: 0.00~600.00 sec.	10.00
			Pr. 01-45=1: 0.0~6000.0 sec.	10.0
×	01-21	JOG deceleration time	Motor drive with 230V/460V/690V, 22kW and above:	
			60.00 / 60.0	
			Motor drive with 690V, 160kW and above: 80.00 / 80.0	
×	01-22	JOG frequency	0.00~599.00Hz	6.00
×	01-23	1 st / 4 th accel. / decel. frequency	0.00~599.00Hz	0.00
×	01-24	S-curve acceleration begin time 1	Pr. 01-45=0: 0.00~25.00 sec.	0.20
,	•••		Pr. 01-45=1: 0.0~250.0 sec.	0.2
×	01-25	S-curve acceleration arrival time 2	Pr. 01-45=0: 0.00~25.00 sec.	0.20
,			Pr. 01-45=1: 0.0~250.0 sec.	0.2
×	01-26	S-curve deceleration begin time 1	Pr. 01-45=0: 0.00~25.00 sec.	0.20
,			Pr. 01-45=1: 0.0~250.0 sec.	0.2
×	01-27	S-curve deceleration arrival time 2	Pr. 01-45=0: 0.00~25.00 sec.	0.20
,			Pr. 01-45=1: 0.0~250.0 sec.	0.2
	01-28	Skip frequency 1 (upper limit)	0.00~599.00Hz	0.00
	01-29	Skip frequency 1 (lower limit)	0.00~599.00Hz	0.00
	01-30	Skip frequency 2 (upper limit)	0.00~599.00Hz	0.00
	01-31	Skip frequency 2 (lower limit)	0.00~599.00Hz	0.00
	01-32	Skip frequency 3 (upper limit)	0.00~599.00Hz	0.00
	01-33	Skip frequency 3 (lower limit)	0.00~599.00Hz	0.00
			0: Output waiting	
	01-34	Zero-speed mode	1: Zero-speed operation	0
			2: Fmin (Refer to Pr. 01-07, 01-41)	
	01-35	Output frequency of motor 2	0.00~599.00Hz	60.00 /
				50.00
			230V series: 0.0V~255.0V	200.0
	01-36	Output voltage of motor 2	460V series: 0.0V~510.0V	400.0
			575V series: 0.0V~637.0V	575.0
			690V series: 0.0V~765.0V	660.0
	01-37	Mid-point frequency 1 of motor 2	0.00~599.00Hz	3.00
			230V series: 0.0V~240.0V	11.0
			460V series: 0.0V~480.0V	22.0
×	01-38	Mid-point voltage 1 of motor 2	575V series: 0.0V~637.0V	0.0
			690V series: 0.0V~720.0V	0.0
			Motor drive with 690V, 185kW and above: 10.0	
	01-39	Mid-point frequency 2 of motor 2	0.00~599.00Hz	1.50
			230V series: 0.0V~240.0V	5.0
×	01-40	Mid-point voltage 2 of motor 2	460V series: 0.0V~480.0V	10.0
			575V series: 0.0V~637.0V	0.0

01-42 Min. output frequency of motor 2 0.00~599.00Hz 01-42 Min. output voltage of motor 2 230V series: 0.0V~240.0V 460V series: 0.0V~637.0V 460V series: 0.0V~637.0V 690V series: 0.0V~720.0V 0: V/F curve determined by Pr. 01-00~01-08 1: V/F curve to the 1.5 th 2: V/F curve to the square 3: 60Hz, voltage saturation in 50Hz 4: 72Hz, voltage saturation in 60Hz 5: 50Hz, decrease gradually with square 7: 60Hz, decrease gradually with square 01-43 V/F curve selection 6: 60Hz, decrease gradually with square	Setting
Motor drive with 690V, 185kW and above: 2.0 01-41 Min. output frequency of motor 2 0.00~599.00Hz 01-42 Min. output voltage of motor 2 230V series: 0.0V~240.0V 460V series: 0.0V~480.0V 575V series: 0.0V~637.0V 690V series: 0.0V~720.0V 690V series: 0.0V~720.0V 0: V/F curve determined by Pr. 01-00~01-08 1: V/F curve to the 1.5 th 2: V/F curve to the square 3: 60Hz, voltage saturation in 50Hz 4: 72Hz, voltage saturation in 60Hz 5: 50Hz, decrease gradually with cube 6: 50Hz, decrease gradually with square 7: 60Hz, decrease gradually with square 7: 60Hz, decrease gradually with square 8: 60Hz, decrease gradually with square	0.0
01-41 Min. output frequency of motor 2 0.00~599.00Hz 01-42 Min. output voltage of motor 2 230V series: 0.0V~240.0V 460V series: 0.0V~480.0V 575V series: 0.0V~637.0V 690V series: 0.0V~637.0V 690V series: 0.0V~720.0V 0 V/F curve determined by Pr. 01-00~01-08 1: V/F curve to the 1.5 th 2: V/F curve to the square 3: 60Hz, voltage saturation in 50Hz 4: 72Hz, voltage saturation in 60Hz 5: 50Hz, decrease gradually with cube 6: 50Hz, decrease gradually with square 7: 60Hz, decrease gradually with square 7: 60Hz, decrease gradually with square	
Image: Window 143 Mindow 143 230V series: 0.0V~240.0V 460V series: 0.0V~480.0V 575V series: 0.0V~637.0V 690V series: 0.0V~720.0V Image: Window 143 0: V/F curve determined by Pr. 01-00~01-08 1: V/F curve to the 1.5 th 2: V/F curve to the square 3: 60Hz, voltage saturation in 50Hz 4: 72Hz, voltage saturation in 60Hz 5: 50Hz, decrease gradually with cube 6: 50Hz, decrease gradually with square 7: 60Hz, decrease gradually with square 7: 60Hz, decrease gradually with square	0.50
 Min. output voltage of motor 2 460V series: 0.0V~480.0V 575V series: 0.0V~637.0V 690V series: 0.0V~720.0V 0: V/F curve determined by Pr. 01-00~01-08 1: V/F curve to the 1.5th 2: V/F curve to the square 3: 60Hz, voltage saturation in 50Hz 4: 72Hz, voltage saturation in 60Hz 5: 50Hz, decrease gradually with cube 6: 50Hz, decrease gradually with square 7: 60Hz, decrease gradually with square 60Hz, decrease gradually with square 	1.0
01-42 Min. output voltage of motor 2 575V series: 0.0V~637.0V 690V series: 0.0V~720.0V 0: V/F curve determined by Pr. 01-00~01-08 1: V/F curve to the 1.5 th 2: V/F curve to the square 3: 60Hz, voltage saturation in 50Hz 4: 72Hz, voltage saturation in 60Hz 5: 50Hz, decrease gradually with cube 6: 50Hz, decrease gradually with square 01-43 V/F curve selection	2.0
01-43V/F curve selection690V series: 0.0V~720.0V0: V/F curve determined by Pr. 01-00~01-08 1: V/F curve to the 1.5th 2: V/F curve to the square 3: 60Hz, voltage saturation in 50Hz 4: 72Hz, voltage saturation in 60Hz 5: 50Hz, decrease gradually with cube 6: 50Hz, decrease gradually with square 7: 60Hz, decrease gradually with cube 8: 60Hz, decrease gradually with square	0.0
0: V/F curve determined by Pr. 01-00~01-08 1: V/F curve to the 1.5 th 2: V/F curve to the square 3: 60Hz, voltage saturation in 50Hz 4: 72Hz, voltage saturation in 60Hz 5: 50Hz, decrease gradually with cube 6: 50Hz, decrease gradually with square 7: 60Hz, decrease gradually with cube 8: 60Hz, decrease gradually with square	0.0
01-43 V/F curve selection 1: V/F curve to the 1.5 th 1: V/F curve to the square 2: V/F curve to the square 3: 60Hz, voltage saturation in 50Hz 4: 72Hz, voltage saturation in 60Hz 5: 50Hz, decrease gradually with cube 6: 50Hz, decrease gradually with square 7: 60Hz, decrease gradually with cube 8: 60Hz, decrease gradually with square	
01-43 V/F curve selection 2: V/F curve to the square 2: V/F curve to the square 3: 60Hz, voltage saturation in 50Hz 4: 72Hz, voltage saturation in 60Hz 5: 50Hz, decrease gradually with cube 6: 50Hz, decrease gradually with square 7: 60Hz, decrease gradually with cube 8: 60Hz, decrease gradually with square 7: 60Hz, decrease gradually with square	0
01-43 V/F curve selection 3: 60Hz, voltage saturation in 50Hz 4: 72Hz, voltage saturation in 60Hz 5: 50Hz, decrease gradually with cube 6: 50Hz, decrease gradually with square 7: 60Hz, decrease gradually with cube 8: 60Hz, decrease gradually with square 7: 60Hz, decrease gradually with square 8: 60Hz, decrease gradually with square	
01-43 V/F curve selection 4: 72Hz, voltage saturation in 60Hz 5: 50Hz, decrease gradually with cube 6: 50Hz, decrease gradually with square 7: 60Hz, decrease gradually with cube 8: 60Hz, decrease gradually with square	
01-43 V/F curve selection 5: 50Hz, decrease gradually with cube 8: 60Hz, decrease gradually with square 8: 60Hz, decrease gradually with cube 8: 60Hz, decrease gradually with square	
01-43 V/F curve selection 6: 50Hz, decrease gradually with square 8: 60Hz, decrease gradually with cube 8: 60Hz, decrease gradually with square	
01-43V/F curve selection7: 60Hz, decrease gradually with cube 8: 60Hz, decrease gradually with square	
8: 60Hz, decrease gradually with square	
9: 50Hz, mid. starting torque	
10: 50Hz, high starting torque	
11: 60Hz, mid. starting torque	
12: 60Hz, high starting torque	
13: 90Hz, voltage saturation in 60Hz	
14: 120Hz, voltage saturation in 60Hz	
15: 180Hz, voltage saturation in 60Hz	
0: Linear accel. /decel.	0
1: Auto accel. , linear decel.	
Auto acceleration / deceleration 2: Linear accel. , auto decel.	
setting 3: Auto accel. / decel.	
4: Linear, stall prevention by auto accel. / decel.	
(limit by Pr. 01-12~01-21)	
Time unit for accel. / decel. and S 0: Unit: 0.01 sec.	0
curve 1: Unit: 0.1 sec.	
Pr. 01-45=0: 0.00~600.00 sec.	1.00
Pr. 01-45=1: 0.0~6000.0 sec.	
01.40 Deceleration Method 0: Normal decel.	0
2: Traction energy control	
02 Digital Input / Output Parameters

Pr.	Explanation	Settings	Factory Setting
		0: 2-wire mode 1, power on for operation control	0
02-00	2-wire / 3-wire operation control	1: 2-wire mode 2, power on for operation control	0
		2: 3-wire, power on for operation control	
02-01	Multi-function input command 1 (MI1)	0: No function	1
02-02	Multi-function input command 2 (MI2)	1: Multi-stage speed command 1	2
02-03	Multi-function input command 3 (MI3)	2: Multi-stage speed command 2	3
02-04	Multi-function input command 4 (MI4)	3: Multi-stage speed command 3	4
02-05	Multi-function input command 5 (MI5)	4: Multi-stage speed command 4	0
02-06	Multi-function input command 6 (MI6)	5: Reset	0
02-07	Multi-function input command 7 (MI7)	6: JOG command (By KPC-CC01 or external	0
02-08	Multi-function input command 8 (MI8)	control)	0
00.00	Input terminal of I/O extension card	7: Acceleration / deceleration speed inhibit	0
02-20	(MI10)	8: The 1 st , 2 nd acceleration / deceleration time	0
00.07	Input terminal of I/O extension card	selection	0
02-27	(MI11)	9: The 3 rd , 4 th acceleration / deceleration time	0
02.20	Input terminal of I/O extension card	selection	0
02-20	(MI12)	10: EF input (Pr. 07-20)	U
02.20	Input terminal of I/O extension card	11: B.B input from external (Base Block)	0
02-29	(MI13)	12: Output stop	0
02.20	Input terminal of I/O extension card	13: Cancel the setting of auto accel. / decel.	0
02-30	(MI14)	time	0
02.21	Input terminal of I/O extension card	14: Switch between motor 1 and motor 2	0
02-51	(MI15)	15: Operation speed command from AVI1	0
		16: Operation speed command from ACI	
		17: Operation speed command from AVI2	
		18: Emergency stop (Pr. 07-20)	
		19: Digital up command	
		20: Digital down command	
		21: PID function disabled	
		22: Clear counter	
		23: Input the counter value (MI6)	
		24: FWD JOG command	
		25: REV JOG command	
		28: Emergency stop (EF1)	
		29: Signal confirmation for Y-connection	
		30: Signal confirmation for ∆-connection	

	Pr.	Explanation	Settings	Factory Setting
			38: Disable EEPROM write function	
			40: Force coast to stop	
			41: HAND switch	
			42: AUTO switch	
			49: Drive enable	
			50: Slave dEb action to execute	
			51: Selection for PLC mode bit 0	
			52: Selection for PLC mode bit 1	
			53: Trigger CANopen quick stop	
			54: Confirm UVW Magnetic Switch	
			55: Brake release	
			56: Local / Remote selection	
			58: Start conflagration mode (Include RUN	
			command)	
			59: Start conflagration mode (No RUN command)	
			60: All motor failure	
			61: Motor 1 failure	
			62: Motor 2 failure	
			63: Motor 3 failure	
			64: Motor 4 failure	
			65: Motor 5 failure	
			66: Motor 6 failure	
			67: Motor 7 failure	
			69: Preheating operation command	
	02.00		0: UP / DOWN by the accel. / decel. time	0
~	02-09	OP / DOWN key mode	1: UP / DOWN constant speed (Pr. 02-10)	0
*	02-10	Constant speed. The accel. / decel. speed of the UP / DOWN key	0.001~1.000Hz / ms	0.001
~	02-11	Digital input response time	0.000~30.000 sec.	0.005
~	02-12	Digital input mode selection	0000h~FFFFh (0: N.O.; 1: N.C.)	0000h
~	02-13	Multi-function output 1 RY1	0: No function	11
~	02-14	Multi-function output 2 RY2	1: Operation indication	1
	02 11		2: Operation speed attained	•
*	02-15	Multi-function output 3 RY3	3: Desired frequency attained 1 (Pr. 02-22)	66
~	02-36	Output terminal of the I/O extension	4: Desired frequency attained 2 (Pr. 02-24)	0
		card (MO10) or (RA10)	5: Zero speed (Frequency command)	_
~	02-37	Output terminal of I/O extension card	6: Zero speed, include STOP (Frequency	0
		(MO11) or (RA11)	command)	
~	02-38	Output terminal of I/O extension card	7: Over torque 1 (Pr. 06-06~06-08)	Ω
	02-00	(MO12) or (RA12)	8: Over torque 2 (Pr. 06-09~06-11)	0

	Pr.	Explanation	Settings	Factory Setting
	02.20	Output terminal of I/O extension card	9: Drive is ready	0
~	02-39	(MO13) or (RA13)	10: Low voltage warning (LV) (Pr. 06-00)	0
~	02 40	Output terminal of I/O extension card	11: Malfunction indication	0
~	02-40 02-41	(MO14) or (RA14)	12: Mechanical brake release (Pr. 02-32)	0
~	02-41	Output terminal of I/O extension card	13: Overheat warning (Pr. 06-15)	0
~	02-41	(MO15) or (RA15)	14: Software brake signal indication (Pr. 07-00)	0
~	02-42	Output terminal of I/O extension card	15: PID feedback error (Pr. 08-13, Pr. 08-14)	0
<i>,</i> .	02-42	(MO16)	16: Slip error (oSL)	Ŭ
~	02-43	Output terminal of I/O extension card	17: Terminal count value attained, does not return	0
	02-40	(MO17)	to 0 (Pr. 02-20)	
~	02-44	Output terminal of I/O extension card	18: Preliminary count value attained, returns to 0	0
	02 77	(MO18)	(Pr. 02-19)	
~	02-45	Output terminal of I/O extension card	19: External Base Block input (B.B.)	0
	02 10	(MO19)	20: Warning output	
~	₩ 02-46	Output terminal of I/O extension card	21: Over voltage warning	0
,		(MO20)	22: Over-current stall prevention warning	
			23: Over-voltage stall prevention warning	
			24: Operation mode indication	
			25: Forward command	
			26: Reverse command	
			27: Output when current \geq Pr. 02-33	
			28: Output when current < Pr. 02-33	
			29: Output when frequency ≥ Pr. 02-34	
			30: Output when frequency < Pr. 02-34	
			31: Y-connection for the motor coil	
			32: Δ -connection for the motor coil	
			33: Zero speed (actual output frequency)	
			34: Zero speed include stop (actual output	
			frequency)	
			35: Error output selection 1 (Pr. 06-23)	
			36: Error output selection 2 (Pr. 06-24)	
			37: Error output selection 3 (Pr. 06-25)	
			38: Error output selection 4 (Pr. 06-26)	
			40: Speed attained (including stop)	
			44: Low current output (use with Pr. 06-71~06-73)	
			45: UVW output electromagnetic valve switch	
			46: Master dEb warning output	
			50: As output control for CANopen	
			51: As analog output control for InnerCOM	
			52: As output control for communication card	

	Pr.	Explanation	Settings	Factory Setting
			53: Conflagration mode instruction	¥
			54: Conflagration mode bypass instruction	
			55: Motor 1 output	
			56: Motor 2 output	
			57: Motor 3 output	
			58: Motor 4 output	
			59: Motor 5 output	
			60: Motor 6 output	
			61: Motor 7 output	
			62: Motor 8 output	
			66: SO logic A	
			67: Analog input level attained	
			68: SO logic B	
			69: Preheat output instruction	
~	02-18	Multi-function output direction	0000h~FFFFh (0: N.O.; 1: N.C.)	0000h
~	02-10	Terminal counting value attained	0~65500	0
~	02-19	(returns to 0)	0-0000	0
~	02-20	Preliminary counting value attained	0~65500	0
~		(not return to 0)		
~	02-22	Desired frequency attained 1	0.00~599.00Hz	60.00 /
				50.00
~	02-23	The width of the desired frequency	0.00~599.00Hz	2.00
				60.00 /
~	02-24	Desired frequency attained 2	0.00~599.00Hz	50.007
		The width of the desired frequency		00.00
*	02-25	attained 2	0.00~599.00Hz	2.00
	02-32	Brake delay time	0.000~65.000 sec.	0.000
		Output current level setting for		
~	02-33	multi-function output terminal	0~150%	0
	00.04	Output frequency setting for		2.00
~	02-34	multi-function output terminal	0.00~599.00Hz	3.00
	02.25	External operation control selection	0: Disable	0
~	02-35	after reset and activate	1: Drive runs if run command exists after reset	0
	02 50	Status of multi function input terminal	Monitor the status of multi function input torminals	Read
	02-00			only
	02-51	Status of multi-function output	Monitor the status of multi-function output	Read
	02-01	terminal	terminals	only

	Pr.	Explanation	Settings	Factory Setting
	02 52	Display external multi-function input	Monitor the statue of PLC input terminals	Read
	02-52	terminal occupied by PLC		only
	02 53	Display external multi-function output	Monitor the status of PLC output terminals	Read
	02-55	terminal occupied by PLC		only
	02 54	Display the frequency command	$0.00 \sim 500.00$ Hz (Read only)	Read
	02-34	executed by external terminal	0.00~599.00Hz (Read only)	only
			0: NO IO card	
			1: EMC-BPS01 card	
			2: NO IO card	
	02 70	IQ card type	3: NO IO card	only Read only Read only Read only
	02-70	2-70 10 card type	4: EMC-D611A card	only
			5: EMC-D42A card	
			6: EMC-R6AA card	
			7: NO IO card	
~	02-72	Preheating output current level	0~100%	0
~	02-73	Preheating output cycle	0~100%	0

03 Analog Input / Output Parameters

	Pr.	Explanation	Settings	Factory Setting
*	03-00	Analog input selection (AVI1)	0: No function	1
*	03-01	Analog input selection (ACI)	1: Frequency command (speed limit under torque	0
*	03-02	Analog input selection (AVI2)	control mode)	0
			4: PID target value	
			5: PID feedback signal	
			6: PTC thermistor input value	
			11: PT100 thermistor input value	
			13: PID offset amount	
×	03-03	Analog input bias (AVI1)		
×	03-04	Analog input bias (ACI)	100.0~100.0%	0.0
×	03-05	Analog positive voltage input bias (AVI2)		0.0
~	02 07	Positive / negative bias mode	0: No bias	
~	03-07	(AVI1)	1: Lower than or equal to bias	
	03.08	Positive / negative bias mode	2: Greater than or equal to bias	0
~	03-00	(ACI)	3: The absolute value of the bias voltage while serving	0
	03-00	Positive / negative bias mode	as the center	
~	00 00	(AVI2)	4: Serve bias as the center	
			0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external	
Analog frequency command for	terminal.			
×	 Analog frequency command for reverse run Analog frequency command for terminal. 1: Negative frequency is valid. Positive frequency = 	0		
			reverse run is controlled by digital keypad or external terminal. 1: Negative frequency is valid. Positive frequency = 0 forward run; negative frequency = reverse run. Direction cannot be switched by digital keypad or	
			Direction cannot be switched by digital keypad or	
			external terminal control.	0 0 0.0 0 0 0 100.0 100.0 0 0
×	03-11	Analog input gain (AVI1)		
×	03-12	Analog input gain (ACI)	-500.0~500.0%	100.0
×	03-13	Analog input gain 1 (AVI2)		
×	03-14	Analog input gain 2 (AVI2)		
×	03-15	Analog input filter time (AVI1)		
×	03-16	Analog input filter time (ACI)	0.00~20.00 sec.	0.01
×	03-17	Analog input filter time (AVI2)		
×	03-18	Addition function of the analog	0: Disable (AVI1, ACI, AVI2)	0
		input	1: Enable	
			0: Disable	
	03-19	Signal loss selection of	1: Continue operation at the last frequency	0
		analog input 4~20mA	2: Decelerate to 0Hz	0 0.0 0 0 100.0 100.0 0 0
			3: Stop immediately and display ACE	

	Pr.	Explanation	Settings	Factory Setting
*	03-20	Multi-function output 1 (AFM1)	0: Output frequency (Hz)	0
*	03-23	Multi-function output 2 (AFM2)	1: Frequency command (Hz)	0
			2: Motor speed (Hz)	
			3: Output current (rms)	
			4: Output voltage	
			5: DC-BUS voltage	
			6: Power factor	
			7: Power	
			9: AVI1%	
			10: ACI%	
			11: AVI2%	
			20: CANopen analog output	
			21: RS-485 analog output	
			22: Communication card analog output	
			23: Constant voltage output	
*	03-21	Gain of analog output 1 (AFM1)	0.0~500.0%	100.0
×	03-22	Analog output 1 when in REV direction (AFM1)	 0: Absolute output voltage 1: Output 0V in REV direction; output 0~10V in FWD direction 2: Output 5~0V in REV direction; output 5~10V in EWD direction 	0
~	03.24	Cain of analog output 2 (AEM2)		100.0
~	03-24			100.0
*	03-25	Analog output 2 when in REV direction (AFM2)	 Absolute output voltage 1: Output 0V in REV direction; output 0~10V in FWD direction 2: Output 5~0V in REV direction; output 5~10V in FWD direction 	0
*	03-27	AFM2 output bias	-100.00~100.00%	0.00
			0: 0~10V	
*	03-28	AVI1 terminal input selection	1: 0~20mA	0
			2: 4~20mA	
			0: 4~20mA	
*	03-29	ACI terminal input selection	1: 0~10V	0
			2: 0~20mA	
	03-30	Display analog output terminal occupied by PLC	Monitor the status of PLC analog output terminals	Read only
*	03-31	AFM2 0~20mA output selection	0: 0~20mA output	
~	03-34	AFM1 0~20mA Output selection	1: 4~20mA output	0
~	03-32	AFM1 DC output setting level		
~	03-33	AFM2 DC output setting level	0.00~100.00%	0.00
~	03-35	AFM1 filter output time		
*	03-36	AFM2 filter output time	0.00~20.00 sec.	0.01

	Pr.	Explanation	Settings	Factory Setting
			0: AVI1	
×	03-44	MO output by source of AI level	1: ACI	0
			2: AVI2	
×	03-45	MO output by source of AI upper level	-100.00%~100.00%	50.00
×	03-46	MO output by source of AI lower level	-100.00%~100.00%	10.00
			0: Regular curve	
			1: 3 point curve of AVI1	
			2: 3 point curve of ACI	
×	02 50	Analog input outro coloction	3: 3 point curve of AVI1 & ACI	7
	03-50	Analog input curve selection	4: 3 point curve of AVI2	Setting 0 50.00 10.00 10.00 7 0 0.00 0.00 0.00 0.00 10.00 0.00 10.00 10.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 50.00 0.00 100.00 50.00 100.00 50.00 100.00 100.00 100.00 100.00 50.00
			5: 3 point curve of AVI1 & AVI2	
			6: 3 point curve of ACI & AVI2	
			7: 3 point curve of AVI1 & ACI & AVI2	
~	02 51	AV/11 low point	Pr. 03-28=0, 0.00~10.00V	0.00
~	03-51		Pr. 03-28≠0, 0.00~20.00mA	0.00
×	03-52	AVI1 proportional low point	-100.00~100.00%	0.00
~	03 53	$\Lambda/11$ mid point	Pr. 03-28=0, 0.00~10.00V	5.00
~	03-55		Pr. 03-28≠0, 0.00~20.00mA	5.00
×	03-54	AVI1 proportional mid-point	-100.00~100.00%	50.00
~	03 55	AV/11 high point	Pr. 03-28=0, 0.00~10.00V	10.00
~	03-55	Avri nign point	Pr. 03-28≠0, 0.00~20.00mA	10.00
×	03-56	AVI1 proportional high point	-100.00~100.00%	100.00
×	02 57	ACL low point	Pr. 03-29=1, 0.00~10.00V	4.00
	03-37	Achow point	Pr. 03-29≠1, 0.00~20.00mA	4.00
×	03-58	ACI proportional low point	-100.00~100.00%	0.00
~	03 50	ACI mid point	Pr. 03-29=1, 0.00~10.00V	12.00
~	00-09		Pr. 03-29≠1, 0.00~20.00mA	12.00
×	03-60	ACI proportional mid-point	-100.00~100.00%	50.00
~	03-61	ACI high point	Pr. 03-29=1, 0.00~10.00V	20.00
~	03-01		Pr. 03-29≠1, 0.00~20.00mA	20.00
×	03-62	ACI proportional high point	-100.00~100.00%	100.00
×	03-63	Positive AVI2 voltage low point	0.00~10.00V	0.00
*	03-64	Positive AVI2 voltage proportional low point	-100.00~100.00%	0.00
×	03-65	Positive AVI2 voltage mid-point	0.00~10.00V	5.00
×	03-66	Positive AVI2 voltage proportional mid-point	-100.00~100.00%	50.00
×	03-67	Positive AVI2 voltage high point	0.00~10.00V	10.00

	Pr.	Explanation	Settings	Factory Setting
*	03 68	Positive AVI2 voltage	100.00~100.00%	100.00
	03-00	proportional high point	-100.00%	100.00

04 Multi-step Speed Parameters

	Pr.	Explanation	Settings	Factory Setting
×	04-00	1 st stage speed frequency		
×	04-01	2 nd stage speed frequency		
×	04-02	3 rd stage speed frequency		
×	04-03	4 th stage speed frequency		
×	04-04	5 th stage speed frequency		
×	04-05	6 th stage speed frequency		
×	04-06	7 th stage speed frequency		
×	04-07	8 th stage speed frequency	0.00~599.00Hz	0.00
×	04-08	9 th stage speed frequency		
×	04-09	10 th stage speed frequency		
×	04-10	11 th stage speed frequency		
×	04-11	12 th stage speed frequency		
×	04-12	13 th stage speed frequency		
×	04-13	14 th stage speed frequency		
×	04-14	15 th stage speed frequency		
×	04-50	PLC buffer 0		
×	04-51	PLC buffer 1		
×	04-52	PLC buffer 2		
×	04-53	PLC buffer 3		
×	04-54	PLC buffer 4		
×	04-55	PLC buffer 5		
×	04-56	PLC buffer 6		
×	04-57	PLC buffer 7		
×	04-58	PLC buffer 8		
×	04-59	PLC buffer 9	0~65535	0
×	04-60	PLC buffer 10	0-00000	0
×	04-61	PLC buffer 11		
×	04-62	PLC buffer 12		
×	04-63	PLC buffer 13		
×	04-64	PLC buffer 14		
×	04-65	PLC buffer 15		
×	04-66	PLC buffer 16		
×	04-67	PLC buffer 17		
×	04-68	PLC buffer 18		
×	04-69	PLC buffer 19		

05 Motor Parameters

	Pr.	Explanation	Settings	Factory Setting
			0: No function	
			1: Rolling test for induction motor (IM)	
	Pr. 05-00 05-01 05-02 05-03 05-04 05-05 05-06 05-07 05-08 05-13 05-14 05-15 05-16 05-18		2: Static test for induction motor (IM)	
Pr.ExplanationSetti05-00Motor parameter auto tuning0: No function 1: Rolling test for induction m 2: Static test for induction m 5: Surface Permanent Mag 	5: Surface Permanent Magnet Synchronous Motor	0		
			parameters dynamic measurement	
			13: Interior Permanent Magnet Synchronous Motor	
			static measurement	
	05-01	Full-load current of induction motor 1 (A)	Determined by motors power	Determined by motors power
		Rated power of induction motor 1		
*	05-02	(kW)	0.00~655.35kW	###.##
		Rated speed of induction motor 1	0~65535	
*	05-03	(rpm)	1710 (60Hz 4 poles); 1410 (50Hz 4 poles)	1710
	05-04	Pole number of induction motor 1	2~64	4
	05.05	No-load current of induction		
	05-05	motor 1 (A)	0~Pr. 05-01 factory setting	###.##
	05.00	Stator resistance (Rs) of		л ллл
	00-00	induction motor 1	0.000~65.53502	#. ###
	05.07	Rotor resistance (Rr) of induction	0.000-65.5250	# ####
	03-07	motor 1	0.000~03.33322	#. ###
	05-08	Magnetizing inductance (Lm) of	0.0~6553.5mH	##
	00 00	induction motor 1		
	05-09	Stator inductance (Lx) of	0.0~6553.5mH	##
		induction motor 1		
	05-13	Full-load current of induction	Determined by motors power	Determined by motors
	00.10	motor 2 (A)		power
~	05-14	Rated power of induction motor 2	0.00~655.35kW	###.##
		(kW)		
×	05-15	Rated speed of induction motor 2	0~65535	1710
		(rpm)	1710 (60Hz 4 poles) ; 1410 (50Hz 4 poles)	
	05-16	Pole number of induction motor 2	2~64	4
	05-17	No-load current of induction motor 2 (A)	0~ Pr. 05-13 factory setting	###.##
	05.40	Stator resistance (Rs) of		,, ,,
	05-18	induction motor 2	0.000~65.535Ω	#.###
	05 10	Rotor resistance (Rr) of induction	0.000-65.5250	<u>ш</u> шши
	00-19	motor 2	0.000~00.0002	# .###

	Pr.	Explanation	Settings	Factory Setting
	05-20	Magnetizing inductance (Lm) of induction motor 2	0.0~6553.5mH	#.#
	05-21	Stator inductance (Lx) of induction motor 2	0.0~6553.5mH	#.#
	05-22	Induction motor 1 / 2 selection	1: motor 1 2: motor 2	1
~	05-23	Frequency for Y-connection / Δ-connection switch of induction motor	0.00~599.00Hz	60.00
	05-24	Y-connection / Δ -connection switch of induction motor	0: Disable 1: Enable	0
~	05-25	Delay time for Y-connection / ∆-connection switch of induction motor	0.000~60.000 sec.	0.200
	05-28	Accumulative Watt-hour of motor (W-Hour)	Read only	#.#
	05-29	Accumulative Watt-hour of motor in low word (KW-Hour)	Read only	#.#
	05-30	Accumulative Watt-hour of motor in high word (KW-Hour)	Read only	#.#
	05-31	Accumulative motor operation time (Min.)	0~1439	0
	05-32	Accumulative motor operation time (Day)	0~65535	0
	05-33	Induction motor and permanent magnet motor selection	0: Induction motor1: Surface Permanent Magnet Synchronous Motor2: Interior Permanent Magnet Synchronous Motor	0
	05-34	Full-load current of permanent magnet motor	Determined by motors power	Determined by motors power
*	05-35	Rated power of permanent magnet motor	0.00~655.35kW	Determined by motors power
~	05-36	Rated speed of permanent magnet motor	0~65535rpm	2000
	05-37	Pole number of permanent magnet motor	0~65535	10
	05-38	Inertia of permanent magnet motor	0.0~6553.5kg.cm ²	Determined by motors power
	05-39	Stator resistance of PM motor	0.000~65.535Ω	0.000
	05-40	Permanent magnet motor Ld	0.00~655.35mH	0.00
	05-41	Permanent magnet motor Lq	0.00~655.35mH	0.00

	Pr.	Explanation	Settings	Factory Setting
*	05-42	PG offset angle of PM motor	0.0~360.0 degree	0.0
~	05-43	Ke parameter of PM motor	0~65535 (Unit: V / 1000rpm)	0

06 Protection Parameters

	Pr.	Explanation	Settings	Factory Setting
			230V series:	0
			Frame A ~D: 150.0~220.0VDC	180.0
			Frame E and above : 190.0~220.0V	200.0
N	06.00	Low voltage level	Explanation Settings Fax Settings 230V series: Frame A ~D: 150.0~220.0VDC 18 Frame E and above : 190.0~220.0V 20 460V series: ge level Frame E and above : 190.0~220.0V 20 460V series: 36 Frame E and above : 380.0~440.0VDC 36 690V series: 420.0~520.0V age stall prevention 0: No function 36 230V series: 0.0~450.0VDC 36 690V series: 0.0~450.0VDC 36 690V series: 0.0~450.0VDC 36 690V series: 0.0~450.0VDC 36 690V series: 0.0~116.0VDC 36 690V series: 0.0~118.0VDC 36 690V series: 0.0~1318.0VDC 10 10 for over-voltage stall 0: Traditional over-voltage stall prevention 10 10 10 n 1: Smart over-voltage prevention 1 230V / 460V series Light duty: 0~130% (100%: drive's rated current) 1 10 10 n 1: Smart over-voltage prevention 230V / 460V series Light duty: 0~125% (100%: drive's rated current) 1 1 10 ent stall prevention 575V / 690V series Light duty: 0~125% (100%: drive's rated current) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
~	00-00		Frame A ~ D: 300.0~440.0VDC	360.0
			Frame E and above : 380.0~440.0V	400.0
			575V series: 420.0~520.0V	470.0
			690V series: 450.0~660.0V	480.0
			0: No function	
			230V series: 0.0~450.0VDC	380.0
*	06-01	06-00 Low voltage level Frame A ~D: 150.0~220.0VDC Frame E and above : 190.0~220.0V 460V series: Frame A ~D: 300.0~440.0VDC Frame E and above : 380.0~440.0V Frame E and above : 380.0~440.0V 575V series: 420.0~520.0V 690V series: 450.0~660.0V 690V series: 0.0~450.0VDC 06-01 Over-voltage stall prevention 230V series: 0.0~450.0VDC 460V series: 0.0~900.0VDC 575V series: 0.0~1116.0VDC 690V series: 0.0~1318.0VDC 0: Traditional over-voltage stall prevention 16-02 Selection for over-voltage stall 0: Traditional over-voltage prevention 16-02 Selection for over-voltage stall 0: Traditional over-voltage prevention 16-02 Selection for over-voltage stall 0: Traditional over-voltage prevention 16-03 Over-current stall prevention 1: Smart over-voltage prevention 106-04 Over-current stall prevention Normal duty: 0~150% (100%: drive's rated current) 106-04 Over-current stall prevention 1: STAT over-130% (100%: drive's rated current) 106-04 Over-current stall prevention 1: STAT over-130% (100%: drive's rated current) 106-04 Over-current stall prevention 0: Tradituty: 0~150% (100%: drive's rated current) <td>760.0</td>	760.0	
	Frame E and above : 380.0~440.0V575V series: 420.0~520.0V690V series: 450.0~660.0V06-01Over-voltage stall prevention06-01Over-voltage stall prevention06-02Selection for over-voltage stall prevention06-03Over-current stall prevention06-03Over-current stall prevention06-04Over-current stall prevention07Selection07Selection08Selection08Selection08Selection08Selection08Selection08Selection09Selection09 <t< td=""><td>575V series: 0.0~1116.0VDC</td><td>920.0</td></t<>	575V series: 0.0~1116.0VDC	920.0	
			690V series: 0.0~1318.0VDC	1087.0
×	06.02	Selection for over-voltage stall	0: Traditional over-voltage stall prevention	0
~	00-02	prevention	1: Smart over-voltage prevention	0
*			230V / 460V series	
	06-03		Light duty: 0~130% (100%: drive's rated current)	120
		Over-current stall prevention	Normal duty: 0~160% (100%: drive's rated current)	120
		during acceleration	575V / 690V series	
			Light duty: 0~125% (100%: drive's rated current)	120
			Normal duty: 0~150% (100%: drive's rated current)	120
			230V / 460V series	
			Light duty: 0~130% (100%: drive's rated current)	120
		Over-current stall prevention	Normal duty: 0~160% (100%: drive's rated current)	120
*	06-04	during operation	575V / 690V series	
			Light duty: 0~125% (100%: drive's rated current)	120
			Normal duty: 0~150% (100%; drive's rated current)	120
			0: By current accel / decel Time	
			1: By the 1 st accel / decel Time	
		Accel. / Decel. Time selection of	2: By the 2 nd accel. / decel. Time	470.0 480.0 380.0 760.0 920.0 1087.0 0 120 120 120 120 120 120 120 120 120
*	06-05	stall prevention at constant speed	3: By the 3 rd accel. / decel. Time	0
			4: By the 4 th accel. / decel. Time	
			5: By auto accel. / decel.	
			0: No function	
			1: Continue operation after over-torque detection	
~	06.06	Over-torque detection selection	during constant speed operation	0
~	00-00	(OT1)	2: Stop after over-torque detection during constant	U
			speed operation	

	Pr.	Explanation	Settings	Factory Setting
			3: Continue operation after over-torque detection during RUN	
			4: Stop after over-torque detection during RUN	
×	06-07	Over-torque detection level (OT1)	10~200% (100%: drive's rated current)	120
×	06-08	Over-torque detection time (OT1)	0.0~60.0 sec.	0.1
N	06-09	Over-torque detection selection (OT2)	 0: No function 1: Continue operation after over-torque detection during constant speed operation 2: Stop after over-torque detection during constant speed operation 3: Continue operation after over-torque detection during RUN 4: Stop after over-torque detection during RUN 	0
×	06-10	Over-torque detection level (OT2)	10~200% (100%: drive's rated current)	120
×	06-11	Over-torque detection time (OT2)	0.0~60.0 sec.	0.1
×	06-12	Current limit	0~200% (100%: drive's rated current)	150
×	06-13	Electronic thermal relay selection 1 (Motor 1)	0: Inverter motor (with external forced cooling)1: Standard motor (motor with fan on the shaft)2: Disable	2
×	06-14	Electronic thermal relay action time 1 (Motor 1)	30.0~600.0 sec.	60.0
×	06-15	Temperature level over-heat (OH) warning	0.0~110.0°C	105.0
×	06-16	Stall prevention limit level	0~100% (Pr. 06-03, Pr. 06-04)	50
	06-17	Fault record 1 (Present fault record)	0: No fault record 1: Over-current during acceleration (ocA)	0
	06-18	Fault record 2	2: Over-current during deceleration (ocd)	0
	06-19	Fault record 3	3: Over-current during constant speed (ocn)	0
	06-20	Fault record 4	4: Ground fault (GFF)	0
	06-21	Fault record 5	5: IGBT short-circuit (occ)	0
	06-22	Fault record 6	6: Over-current at stop (ocS)	0
			7: Over-voltage during acceleration (ovA)	
			8: Over-voltage during deceleration (ovd)	
			9: Over-voltage during constant speed (ovn)	
			10: Over-voltage at stop (ovS)	
			11: Low-voltage during acceleration (LvA)	
			12: Low-voltage during deceleration (Lvd)	
			13: Low-voltage during constant speed (Lvn)	
			14: Low-voltage at stop (LvS)	
			15: Phase loss protection (OrP)	

Pr.	Explanation	Settings	Factory Setting
		16: IGBT over-heat (oH1)	
		17: Capacitance over-heat (oH2)	
		18: TH1 open: IGBT over-heat protection error (tH1o)	
		19: TH2 open: capacitance over-heat protection error	
		(tH2o)	
		21: Drive over-load (oL)	
		22: Electronics thermal relay protection 1 (EoL1)	
		23: Electronics thermal relay protection 2 (EoL2)	
		24: Motor overheat (oH3) (PTC / PT100)	
		26: Over-torque 1 (ot1)	
		27: Over-torque 2 (ot2)	
		28: Low current (uC)	
		30: Memory write-in error (cF1)	
		31: Memory read-out error (cF2)	
		33: U-phase current detection error (cd1)	
		34: V-phase current detection error (cd2)	
		35: W-phase current detection error (cd3)	
		36: Clamp current detection error (Hd0)	
		37: Over-current detection error (Hd1)	
		38: Over-voltage detection error (Hd2)	
		39: IGBT short-circuit detection error (Hd3)	
		40: Auto tuning error (AUE)	
		41: PID feedback loss (AFE)	
		48: Analog current input loss (ACE)	
		49: External fault input (EF)	
		50: Emergency stop (EF1)	
		51: External base block (bb)	
		52: Password error (Pcod)	
		53: Firmware version error	
		54: Communication error (CE1)	
		55: Communication error (CE2)	
		56: Communication error (CE3)	
		57: Communication error (CE4)	
		58: Communication time-out (CE10)	
		60: Brake transistor error (bF)	
		61: Y-connection / Δ -connection switch error (ydc)	
		62: Decel. Energy backup error (dEb)	
		63: Slip error (oSL)	
		64: Electromagnet switch error (ryF)	
		72: Channel 1 (STO1~SCM1) safety loop error (STL1)	

	Pr.	Explanation	Settings	Factory Setting
			73: External safety gate (S1)	
			74: FIRE conflagration mode output	
			76: Safe torque off (STO)	
			77: Channel 2 (STO2~SCM2) safety loop error (STL2)	
			78: Internal loop error (STL3)	
			79: Uoc Before run U phase oc	
			80: Voc Before run V phase oc	
			81: Woc Before run W phase oc	
			82: U phase output phase loss (OPHL)	
			83: V phase output phase loss (OPHL)	
			84: W phase output phase loss (OPHL)	
			90: Inner PLC function is forced to stop	
			99: CPU instruction error(TRAP)	
			101: CANopen software disconnect 1 (CGdE)	
			102: CAN open software disconnect 2 (CHbE)	
			103: CANopen synchronous error (CSyE)	
			104: CANopen hardware disconnect (CbFE)	
			105: CANopen index setting error (CIdE)	
			106: CANopen station number setting error (CAdE)	
			107: CANopen index setting exceed limit (CFrE)	
			111: InrCOM Internal communication overtime error	
			(ictE)	
~	06-23	Fault output option 1		
*	06-24	Fault output option 2	0~65525 (refer to bit table for fault code)	0
~	06-25	Fault output option 3		0
*	06-26	Fault output option 4		
		Electronic thermal relay colection	0: Inverter motor (with external forced cooling)	
*	06-27	2 (Motor 2)	1: Standard motor (so motor with fan on the shaft)	2
			2: Disable	
	06.20	Electronic thermal relay action	20.0-600.0.000	60.0
~	00-20	time 2 (Motor 2)	30.0~000.0 sec.	00.0
			0: Warn and keep operation	
	06.20	PTC detection selection / PT100	1: Warn and ramp to stop	0
~	00-29	motion	2: Warn and coast to stop	0
			3: No warning	
~	06-30	PTC level	0.0~100.0%	50.0
	06.24	Frequency command at		Read
	00-31	malfunction	0.00~599.00円2	only
	06.00			Read
	00-32		0.00~088.00E	only

	Pr.	Explanation	Settings	Factory Setting
	06-33	Output voltage at malfunction	0.0~6553.5V	Read
				only
	06-34	DC voltage at malfunction	0.0~6553.5V	Read only
	06-35	Output current at malfunction	0.0~6553.5Amp	Read only
	06-36	IGBT temperature at malfunction	-3276.7~3276.7°C	Read
	06-37	Capacitance temperature at	-3276.7~3276.7°C	Read
	06-38	Motor speed in rpm at malfunction	-32767~32767rpm	Read
	06-40	Status of multi-function input terminal at malfunction	0000h~FFFFh	Read only
	06-41	Status of multi-function output terminal at malfunction	0000h~FFFFh	Read only
	06-42	Drive status at malfunction	0000h~FFFFh	Read only
×	06-44	STO latch selection	0: STO latch 1: STO no latch	0
*	06-45	Treatment to output phase loss protection (OPHL)	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning	3
×	06-46	Detection time of output phase loss	0.000~65.535 sec.	0.500
×	06-47	Current detection level of output phase loss	0.00~100.00%	1.00
×	06-48	DC brake time of output phase loss	0.000~65.535 sec.	0.000
×	06-49	LvX auto reset	0: Disable 1: Enable	0
×	06-50	Time for input phase loss detection	0.00~600.00 sec.	0.20
N	06-52	Ripple of input phase loss	230V series: 0.0~100.0VDC 460V series: 0.0~200.0VDC 575V series: 0.0~400.0VDC 690V series: 0.0~480.0VDC	30.0 / 60.0 / 75.0 / 90.0
×	06-53	Treatment for the detected input phase loss protection (OrP)	0: Warn and ramp to stop 1: Warn and coast to stop	0

	Pr.	Explanation	Settings	Factory Setting
*	06-55	Derating protection	 0: Constant rated current and limit carrier wave by load current and temperature 1: Constant carrier frequency and limit load current by setting carrier wave 2: Constant rated current (same as setting 0), but close current limit 	0
~	06-56	PT100 voltage level 1		5 000
~	06-57	PT100 voltage level 2	0.000~10.000V	7 000
~	06-58	PT100 level 1 frequency protect	0.00~599.00Hz	0.00
*	06-59	PT100 activation level 1 protect frequency delay time	0~6000 sec.	60
*	06-60	Software detection GFF current level	0.0~6553.5 %	60.0
~	06-61	Software detection GFF filter time	0.00~655.35 sec.	0.10
	06-63	Fault record 1 (Day)	0~65535 days	Read only
	06-64	Fault record 1 (Min.)	0~1439 min.	Read only
	06-65	Fault record 2 (Day)	0~65535 days	Read only
	06-66	Fault record 2 (Min.)	0~1439 min.	Read only
	06-67	Fault record 3 (Day)	0~65535 days	Read only
	06-68	Fault record 3 (Min.)	0~1439 min.	Read only
	06-69	Fault record 4 (Day)	0~65535 days	Read only
	06-70	Fault record 4 (Min.)	0~1439 min.	Read only
~	06-71	Low current setting level	0.0~100.0 %	0.0
~	06-72	Low current detection time	0.00~360.00 sec.	0.00
*	06-73	Treatment for low current	 0: No function 1: Warn and coast to stop 2: Warn and ramp to stop by 2nd deceleration time 3: Warn and operation continue 	0
			230V series: 0.0~200.0VDC	20.0
			460V series: 0.0~200.0VDC	40.0
~	06-76	dEb motion offset setting	575V series: 0.0~200.0VDC	50.0
			690V series: 0.0~200.0VDC	60.0

	Pr.	Explanation	Settings	Factory Setting
			0: Disable	
	06-80	Fire mode	1: Forward operation	0
			2: Reverse operation	
*	06-81	Operating frequency when running fire mode	0.00~599.00Hz	60.00
	00.00	Enclusion of the second	0: Disable	0
*	06-82	Enable bypass on fire mode	1: Enable	U
~	06-83	Bypass delay time on fire mode	0.0~6550.0 sec.	0.0
	06-84	Number of times of unusual reset	0~10	0
~		at fire mode		0
~	06-85	Auto-restart counter time	0.0~6000.0 sec.	60.0
			Bit0: 0=Open Loop; 1=Close Loop (PID control)	
			Bit1: 0=Manual reset fire mode; 1=Auto reset fire mode	
	06-86	Fire mode motion	0: Open loop control & manual reset fire mode	0
	00-00		1: Closed loop control & manual reset fire mode	U
			2: Open loop control & automatic reset fire mode	
			3: Closed loop control & automatic reset fire mode	
~	06-87	Fire mode PID set point	0.00~100.00%	0.00

07 Special Parameters

	Pr.	Explanation	Settings	Factory Setting
*	07-00	Software brake level	230V series: 350.0~450.0VDC 460V series: 700.0~900.0VDC 575V series: 850.0~1116.0VDC 690V series: 939.0~1318.0VDC	380.0 740.0 895.0 1057.0
*	07-01	DC brake current level	0~100%	0
*	07-02	DC brake time at run	0.0~60.0 sec.	0.0
*	07-03	DC brake time at stop	0.0~60.0 sec.	0.0
*	07-04	DC brake frequency at stop	0.00~599.00Hz	0.00
*	07-05	Voltage increasing gain	1~200%	100
*	07-06	Restart after momentary power loss	0: Stop operation1: Speed tracking by the speed before the power loss2: Speed tracking by minimum output frequency	0
*	07-07 Maximum power loss duration 0.		0.0~20.0 sec.	2.0
~	07-08	Base block time	0.0~5.0 sec. (Depending on the motor power)	#.#
~	07-09	Current limit for speed tracking	irrent limit for speed tracking 20~200%	
*	07-10	Treatment to restart after fault	0: Stop operation1: Speed tracking by current speed2: Speed tracking by minimum output frequency	0
~	07-11	Restart times after fault	0~10	0
*	07-12	Speed tracking during start-up	 0: Disable 1: Speed tracking by maximum output frequency 2: Speed tracking by start-up motor frequency 3: Speed tracking by minimum output frequency 	0
*	07-13	dEb function selection	 0: Disable 1: dEb with auto accel. / decel., the output frequency will not return after power reply. 2: dEb with auto accel. / decel., the output frequency will return after power reply. 	0
*	07-15	Dwell time at accel.	0.00~600.00 sec.	0.00
*	07-16	Dwell frequency at accel.	0.00~599.00Hz	0.00
*	07-17	Dwell time at decel.	0.00~600.00 sec.	0.00
*	07-18	Dwell frequency at decel.	0.00~599.00Hz	0.00
*	07-19	Fan cooling control	 0: Fan always ON 1: Fan will be OFF after the AC motor drive stops 1 minute 2: When the AC motor drive runs, the fan is ON. When the AC motor drive stops, the fan is OFF 3: Fan turns ON when preliminary IGBT temperature (around 60°C) is attained. 	0
			4: Fan always OFF	

	Pr.	Explanation	Settings	Factory Setting
			0: Coast to stop	
			1: By deceleration time 1	
			2: By deceleration time 2	
*	07-20	Emergency stop (EF) & force to	3: By deceleration time 3	0
	stop selection	stop selection	4: By deceleration time 4	
			5: System deceleration	
			6: Automatic deceleration	
	07.04		0: Disable	0
~	07-21	Auto energy-saving operation	1: Enable	0
*	07-22	Energy-saving gain	10~1000%	100
		Auto voltage regulation $(\Lambda)(D)$	0: Enable AVR	
*	07-23		1: Disable AVR	0
		Tunction	2: Disable AVR during deceleration	
~	07.24	Filter time of torque command	0.001~10.000 sec	0.500
	07-24	(V/F and SVC control mode)		0.000
~	07-25	Filter time of slip compensation	0 001~10 000 sec	0 100
	01 20	(V/F and SVC control mode)		0.100
~	07-26	Torque compensation gain (V/F	IM: 0~10 (when Pr. 05-33 = 0)	0
	01 20	and SVC control mode)	PM: 0~5000 (when Pr. 05-33 = 1 or 2)	Ű
*	07-27	Slip compensation gain (V/F and SVC control mode)	0.00~10.00	0.00 (SVC mode default
			0.0~100.0%	value: 1)
*	07-29	Slip deviation level	0 : No detect	0.0
*	07-30	Over slip deviation detection	0.0~10.0 sec.	1.0
		time		
			0: Warn and keep operation	
~	07-31	Over slip deviation treatment	1: Warn and ramp to stop	0
			2: Warn and coast to stop	
			3: No warning	
~	07-32	Motor shock compensation	0~10000	1000
		factor	0: No action	
*	07-33	Auto restart internal of fault	0.0~6000.0 sec.	60.0

08 High-function PID Parameters

	Pr.	Explanation	Settings	Factory Setting
			0: No function	0
			1: Negative PID feedback from analog input	
×	08-00	00 Input terminal for PID feedback	(Pr. 03-00~03-02)	0
			4: Positive PID feedback from analog input	
			(Pr. 03-00~03-02)	
×	08-01	Proportional gain (P)	0.0~100.0%	1.0
×	08-02	Integral time (I)	0.00~100.00 sec.	1.00
×	08-03	Derivative control (D)	0.00~1.00 sec.	0.00
×	08-04	Upper limit of integral control	0.0~100.0%	100.0
×	08-05	PID output command limit	0.0~110.0%	100.0
	09.06	PID feedback value by	200.00.200.00%	Read
~	08-06	communication protocol	-200.00~200.00%	only
×	08-07	PID delay time	0.0~35.0 sec.	0.0
×	08-08	Feedback signal detection time	0.0~3600.0 sec.	0.0
			0: Warn and keep operation	
*	08-09	Feedback signal fault treatment	1: Warn and ramp to stop	0
	00-09		2: Warn and coast to stop	
		3: Warn and operate at last frequency		
×	08-10	Sleep frequency	0.00~599.00Hz	0.00
×	08-11	Wake-up frequency	0.00~599.00Hz	0.00
×	08-12	Sleep time	0.0~6000.0 sec.	0.0
×	08-13	PID deviation level	1.0~50.0%	10.0
×	08-14	PID deviation time	0.1~300.0 sec.	5.0
×	08-15	Filter time for PID feedback	0.1~300.0 sec.	5.0
~	09 16	PID componention soluction	0: Parameter setting	0
~	00-10	PID compensation selection	1: Analog input	0
×	08-17	PID compensation	-100.0~100.0%	0.0
	08-18	Setting of sleep mode function	0: Follow PID output command	0
	00-10		1: Follow PID feedback signal	0
×	08-19	Wakeup integral limit	0.0~200.0%	50.0
	08-20	PID mode selection	0: Serial connection	0
	00-20		1: Parallel connection	0
	<u>08.21</u>	Enable PID to change operation	0: Operation direction can be changed	0
	00-21	direction	1: Operation direction cannot be changed	0
×	08-22	Wakeup delay time	0.00~600.00 sec.	0.00

09 Communication Parameters

	Pr.	Explanation	Settings	Factory Setting
×	09-00	COM1 communication address	1~254	1
×	09-01	COM1 transmission speed	4.8~115.2Kbps	9.6
			0: Warn and continue operation	
~	00.02	COM1 transmission fault treatment	1: Warn and ramp to stop	3
~	09-02		2: Warn and coast to stop	5
			3: No warning and continue operation	
×	09-03	COM1 time-out detection	0.0~100.0 sec.	0.0
			1: 7, N, 2 (ASCII)	
			2: 7, E, 1 (ASCII)	
			3: 7, O, 1 (ASCII)	
			4: 7, E, 2 (ASCII)	
			5: 7, O, 2 (ASCII)	
			6: 8, N, 1 (ASCII)	
			7: 8, N, 2 (ASCII)	
			8: 8, E, 1 (ASCII)	
×	09-04	COM1 communication protocol	9: 8, O, 1 (ASCII)	1
			10: 8, E, 2 (ASCII)	
			11: 8, O, 2 (ASCII)	
			12: 8, N, 1 (RTU)	
			13: 8, N, 2 (RTU)	
			14: 8, E, 1 (RTU)	
			15: 8, O, 1 (RTU)	
			16: 8, E, 2 (RTU)	
			17: 8, O, 2 (RTU)	
×	09-09	Communication response delay time	0.0~200.0ms	2.0
	09-10	Main frequency of the communication	0.00~599.00Hz	60.00
×	09-11	Block transfer 1	0~FFFFh	0000
×	09-12	Block transfer 2	0~FFFh	0000
×	09-13	Block transfer 3	0~FFFFh	0000
×	09-14	Block transfer 4	0~FFFFh	0000
×	09-15	Block transfer 5	0~FFFh	0000
×	09-16	Block transfer 6	0~FFFh	0000
×	09-17	Block transfer 7	0~FFFFh	0000
N	09-18	Block transfer 8	0~FFFh	0000
N	09-19	Block transfer 9	0~FFFh	0000
×	09-20	Block transfer 10	0~FFFh	0000
×	09-21	Block transfer 11	0~FFFFh	0000
×	09-22	Block transfer 12	0~FFFFh	0000

	Pr.	Explanation	Settings	Factory Setting	
×	09-23	Block transfer 13	0~FFFFh	0000	
×	09-24	Block transfer 14	0~FFFFh	0000	
×	09-25	Block transfer 15	0~FFFFh	0000	
×	09-26	Block transfer 16	0~FFFFh	0000	
			0: Decoding method 1 (20xx)		
	09-30	Communication decoding method	1: Decoding method 2 (60xx)	1	
			-12: Internal PLC control		
			-10: Internal communication Master		
			-8: Internal communication Slave 8		
			-7: Internal communication Slave 7		
			-6: Internal communication Slave 6		
	00.21	Internal communication protocol	-5: Internal communication Slave 5	0	
	09-31	internal communication protocol	-4: Internal communication Slave 4	0	
			-3: Internal communication Slave 3		
			-2: Internal communication Slave 2		
			-1: Internal communication Slave 1		
			0: Modbus 485		
			1: BACnet		
×	09-33	PLC command force to 0	0~65535	0000	
	09-35	PLC address	1~254	2	
	09-36	CANonen slave address	0: Turn off	0	
	00 00		0~127	0	
			0: 1Mbps		
		CANopen speed	1: 500Kbps		
	00.27		2: 250Kbps	0	
	09-37		3: 125Kbps	0	
			4: 100Kbps (Delta only)		
			5: 50Kbps		
			bit 0: CANopen Guarding Time out		
			bit 1: CANopen heartbeat Time out		
			bit 2: CANopen SYNC Time out		
			bit 3: CANopen SDO Time out		
			bit 4: CANopen SDO buffer overflow		
			bit 5: Can Bus off		
	09-39	CANopen warning record	bit 6: Error protocol of CANopen	Read only	
			bit 8: The setting values of CANopen indexes		
			are fail		
			bit 9: The setting value of CANopen address		
			is fail		
			bit 10: The checksum value of CANopen		
			indexes is fail		

	Pr.	Explanation	Settings	Factory Setting
	00.40		0: Delta defined decoding method	4
	09-40	CANopen decoding method	1: CANopen DS402 standard	1
			0: Node Reset State	
			1: Com Reset State	
	00.44		2: Boot up State	Read
	09-41	CANopen communication status	3: Pre Operation State	Only
			4: Operation State	
			5: Stop State	
			0: Not Ready for Use State	
			1: Inhibit Start State	
			2: Ready to Switch on State	
	00.40		3: Switched on State	Read
	09-42	CANopen control status	4: Enable Operation State	Only
			7: Quick Stop Active State	
			13: Error Reaction Active State	
			14: Error State	
	00.45	CANepen meeter function	0: Disable	0
	09-45	CANopen master function	1: Enable	0
	09-46	CANopen master address	0~127	100
	09-50	BACnet MAC ID	0~127	10
	09-51	BACnet communication speed	9.6~76.8Kbps	38.4
	09-52	BACnet Device index L	0~65535	10
	09-53	BACnet Device index H	0~63	0
	09-55	BACnet Max Address	0~127	127
	09-56	BACnet password	0~65535	0
			0: No communication card	
			1: DeviceNet slave	
	00.00	Identifications for communication cond	2: Profibus-DP slave	Read
	09-60	Identifications for communication card	3: CANopen slave / master	Only
			4: Modbus -TCP Slave	
			5: EtherNet/IP Slave	
	09-61	Firmware version of communication card	Read only	##
	09-62	Product code	Read only	##
	09-63	Error code	Read only	##
	00.70	Address of communication card (for	DeviceNet: 0-63	4
~	09-70	DeviceNet or PROFIBUS)	Profibus-DP: 1-125	1
			Standard DeviceNet:	
	00.74	Communication card speed	0: 100Kbps	_
N	09-71	(for DeviceNet)	1: 125Kbps	2
			2: 250Kbps	

	Pr.	Explanation	Settings	Factory Setting				
			3: 1Mbps (Delta only)					
			Non-standard DeviceNet: (Delta only)					
			0: 10Kbps					
			1: 20Kbps					
			2: 50Kbps					
			3: 100Kbps					
			4: 125Kbps					
			5: 250Kbps					
			6: 500Kbps					
			7: 800Kbps					
			8: 1Mbps					
			0: Standard DeviceNet					
			In this mode, baud rate can only be					
			100Kbps, 125Kbps, 250Kbps in standard					
~	09-72	Additional settings for communication	DeviceNet speed	0				
		card speed (for DeviceNet)	1: Nonstandard DeviceNet					
			In this mode, the baud rate of DeviceNet					
			can be the same as CANopen (0~8).					
		IP configuration of the communication	0: Static IP					
~	09-75	card (for MODBUS TCP)	1: Dynamic IP (DHCP)	0				
		IP address 1 of the communication card						
×	09-76	(for MODBUS TCP)	0~65535	0				
		IP address 2 of the communication card						
~	09-77	(for MODBUS TCP)	0~65535	0				
		IP address 3 of the communication card						
×	09-78	(for MODBUS TCP)	0~65535	0				
		IP address 4 of the communication card						
~	09-79	(for MODBUS TCP)	0~65535	0				
		Address mask 1 of the communication						
×	09-80	card (for MODBLIS TCP)	0~65535	0				
		Address mask 2 of the communication		0				
~	09-81	card (for MODBLIS TCP)	0~65535	0				
		Address mask 3 of the communication						
~	09-82	and (for MODRUS TCP)	0~65535	0				
		Address mask 4 of the communication						
~	09-83	Address mask 4 of the communication	0~65535	0				
×	09-84	Gateway address 1 of the	0~65535	0				
		communication card (for MODBUS TCP)						
~	09-85	Gateway address 2 of the communication card (for MODBUS TCP)	0~65535	0				

	Pr.	Explanation	Settings	Factory Setting
×	09-86	Gateway address 3 of the communication card (for MODBUS TCP)	0~65535	0
×	09-87	Gateway address 4 of the communication Card (for MODBUS TCP)	0~65535	0
×	09-88	Password for communication card (Low word) (for MODBUS TCP)	0~99	0
×	09-89	Password for communication card (High word) (for MODBUS TCP)	0~99	0
N	09-90	Reset communication card (for MODBUS TCP)	0: No function 1: Restore to factory setting	0
M	09-91	Additional settings for communication card (for MODBUS TCP)	 bit 0: Enable IP filter bit 1: Internet parameters enable (1bit). After updating the parameters of communication card; disable. bit 2: Login password enable (1bit). After updating the parameters of communication card; disable. 	0
	09-92	Status of communication card (for MODBUS TCP)	bit 0: Password enable When the communication card is set with password; enabled. When the password is cleared; disabled.	0

10 PID Control Parameters

	Pr.	Explanation	Settings	Factory Setting	
×	10-31	I/F mode, current command	0~150% of motor rated current	40	
×	10-32	PM sensorless observer bandwidth for high speed zone	0.00~600.00Hz	5.00	
~	10-34	PM sensorless observer low-pass filter gain	0.00~655.35	1.00	
~	10 30	Frequency when switch from I/F	0.00~599.00H7	20.00	
~	10-00	mode to PM sensorless mode	0.00 -399.0012	20.00	
	10 10	Frequency when switch from PM		20.00	
~	10-40	sensorless mode to I/F mode	0.00~599.00H2	20.00	
	10.11	I/F mode, Id current low		0.0	
~	10-41	pass-filter time	0.0~6.0 sec.	0.2	
	10.40	Initial angle detection pulse	0.0.2.0 times of mater rated surrent	1.0	
~	10-42	value	0.0~3.0 times of motor rated current	1.0	
×	10-49	Zero voltage time while start up	0.000~60.000 sec.	0.000	
×	10-51	Injection frequency	0~1200Hz	500	
	10.50	Iniantian magnituda		15.0 /	
~	10-52	injection magnitude	0.0~200.0V	30.0	
			0: No function		
			1: Internal 1/4 rated current attracting the rotor to zero		
×	10-53		degrees	0	
		detection method	2: High frequency injection		
			3: Pulse injection		

IM: Induction Motor; PM: Permanent Magnet Motor

11 Advanced Parameters

Group 11 Advanced Parameters are reserved.

12 PUMP Parameters

	Pr.	Explanation	Settings	Factory Setting
			0: Disable	
			1: Time cycle	
	12.00	Cuelo Control	2: Qualitative cycle	0
	12-00	Cycle Control	3: Qualitative control	0
			4: Time cycle + Qualitative cycle	
			5: Time cycle + Qualitative control	
	12-01	Number of Motors to be connected	1~8	1
	12-02	Operating time of each motor (minutes)	0~65500 min.	0
	12-03	Delay Time due to the Acceleration (or the Increment) at Motor Switching (seconds)	0.0~3600.0 sec.	1.0
	12-04	Delay Time due to the Deceleration (or the Decrement) at Motor Switching (seconds)	0.0~3600.0 sec.	1.0
*	12-05	Delay time while fixed quantity circulation at Motor Switching (seconds)	0.0~3600.0 sec.	10.0
*	12-06	Frequency when switching motors at fixed quantity circulation (Hz)	0.00~599.00Hz	60.0
	12-07	Action to do when Fixed Quantity Circulation breaks down	0: Turn off all output 1: Motors powered by mains electricity continues to operate	0
*	12-08	Frequency when stopping auxiliary motor (Hz)	0.00~599.00Hz	0.00

13 Application Parameters by Industry

Pr.	Explanation	Settings	Factory Setting
		0: Disable	
		1: User Parameter	
40.00	Industry Parameters	2: Compressor (IM)	0
13-00	combination	3: Fan	0
		4: Pump	
		10: Air Handling Unit, AHU	
13-01			
~	Industry Parameters 1~99	0.00~655.35	0.00
13-99			

[This page intentionally left blank]

Chapter 12 Description of Parameter Settings

12-1 Description of parameter settings 00 Drive Parameters

✓ This parameter can be set during operation.

CC - CC Identity Code of the AC Motor Drive													
						Facto	ory Setting	g: #.#					
Settings Rea	Settings Read Only												
Image: Control of the second secon													
						Facto	ory Setting	g: #.#					
Settings Read Only													
Pr. 00-00 displays the identity code of the AC motor drive. Using the following table to check if													
Pr.00-01 setting is the rated current of the AC motor drive. Pr.00-01 corresponds to the identity													
code Pr.00-00.													
🛄 The factory setting is th	ne rated c	urrent for	light duty.	Please s	et Pr.00-1	6 to 1 to 0	display the	e rated					
current for the normal	duty.												
		2	30V series	;									
Frame			А				В						
kW	0.75	1.5	2.2	3.7	5.5	7.5	11	15					
HP	1	2	3	5	7.5	10	15	20					
Pr.00-00	4	6	8	10	12	14	16	18					
Rated Current for Light Duty [A]	5	7.5	10	15	21	31	46	61					
	L .	1											

230V series												
Frame			А		В							
kW	0.75	1.5	2.2	3.7	5.5	7.5	11	15				
HP	1	2	3	5	7.5	10	15	20				
Pr.00-00	4	6	8	10	12	14	16	18				
Rated Current for Light Duty [A]	5	7.5	10	15	21	31	46	61				
Rated Current for Normal Duty [A]	3	5	8	11	17	25	33	49				
Frame		С		[כ	E						
kW	18.5	22	30	37	45	55	75	90				
HP	25	30	40	50	60	75	100	125				
Pr.00-00	20	22	24	26	28	30	32	34				
Rated Current for Light Duty [A]	75	90	105	146	180	215	276	322				
Rated Current for Normal Duty [A]	65	75	90	120	146	180	215	255				

460V series															
Frame		A									В		С		
kW	0.75	1.5	2.2	2.2 3.7		0	5.5	7.5	1	11	15	18.5	22	30	37
HP	1	2	3	5	Ę	5	7.5	10	1	15	20	25	30	40	50
Pr.00-00	5	7	9	11	9	3	13	15	1	7	19	21	23	25	27
Rated Current for Light Duty [A]	3	4.2	5.5	8.5	5 10	.5	13	18	2	24	32	38	45	60	73
Rated Current for Normal Duty [A]	2.8	3.0	4.0	6.0) 9.	0 1	0.5	12	1	18	24	32	38	45	60
Frame	D	0	C)		E		F		(G			Н	
kW	45	55	75	90	110	132	160) 18	5	220	280	315	355	400	500
HP	60	75	100	125	150	175	21	5 25	0	300	375	425	475	536	675
Pr.00-00	29	31	33	35	37	39	41	43	3	45	47	49	51	53	55
Rated Current for Light Duty [A]	91	110	150	180	220	260	310	37	0	460	530	616	683	770	930
Rated Current for Normal Duty [A]	73	91	110	150	180	220	260	31	0	370	460	550	616	683	866

Chapter 12 Description of Parameter Settings | CP2000

575V series												
Frame		А		В								
kW	1.5	2.2	3.7	5.5	7.5	11	15					
HP	HP 2				10	15	20					
Pr.00-00	505	506	507	508	509	510	511					
Rated Current for Light Duty [A]	3	4.3	6.7	9.9	12.1	18.7	24.2					
Rated Current for Normal Duty [A]	2.5	3.6	5.5	8.2	10	15.5	20					

690V series													
Frame		(С			ļ	C	E					
kW	18.5	22	22 30		37	45	55	75	9	0	110	132	
HP	25	30	4	0	50	60	75	100	1:	25	150	175	
Pr.00-00	612	613	61	4	615	616	617	618	6	19	620	621	
Rated Current for Light Duty [A]	24	30	36		45	54	67	86	10	04	125	150	
Rated Current for Normal Duty [A]	20	24	3	0	36	45	54	67	8	6	104	125	
Frame		F		G			н						
kW	160	200	C	2	250	315	400	45	0	Ę	560	630	
HP	215	270	C		335	425	530	60	0	7	745	840	
Pr.00-00	622	68	6 6		687	626	628	62	9	6	631	632	
Rated Current for Light Duty [A]	180	220	C	2	290	350	430	46	5	Ę	590	675	
Rated Current for Normal Duty [A]	150	18	0	2	220	290	350	38	5	4	465	675	

Parameter Reset

Factory Setting: 0

Settings 0: No Function

- 1: Parameter write protect
- 5: Reset KWH display to 0
- 6: Reset PLC (including CANopen Master Index)
- 7: Reset CANopen Index (Slave)
- 9: All parameters are reset to factory settings(base frequency is 50Hz)
- 10: All parameters are reset to factory settings (base frequency is 60Hz)
- When it is set to 1, all parameters are read only except Pr.00-02, 00-07~00-08 and it can be used with password setting for password protection. It needs to set Pr.00-02 to 0 before changing other parameter settings.
- When it is set to 5, KWH display value can be reset to 0 even when the drive is operating. Pr. 05-26, 05-27, 05-28, 05-29, 05-30 reset to 0.
- When it is set to 6: clear internal PLC program (includes the related settings of PLC internal CANopen master)
- Description When it is set to 7: reset the related settings of CANopen slave.
- When it is set to 9 or 10: all parameters are reset to factory settings. If password is set in Pr.00-08, input the password set in Pr.00-07 to reset to factory settings.
- In When it is set to $6 \cdot 7 \cdot 9 \cdot 10$, please re-power the motor drive after setting.

Factory setting: 0

- 0: Display the frequency command (F) Settings
 - 1: Display the actual output frequency (H)
 - 2: Display User define (U)
 - 3: Output current (A)

Description: This parameter determines the start-up display page after power is applied to the drive. User defined choice display according to the setting in Pr.00-04.

× <u>88-8</u> 4	Content of Multi-function Display	
		Factory setting: 3
	Settings	0: Display output current (A) (Unit: Amps)
		1: Display counter value (c) (Unit: CNT)
		2: Display actual output frequency (H) (Unit: Hz)
		3: Display DC-BUS voltage (v) (Unit: VDC)
		4: Display output voltage (E) (Unit: VAC)
		5: Display output power angle (n) (Unit: deg)
		6: Display output power in kW (P) (Unit: kW)
		7: Display actual motor speed rpm (Unit: rpm)
		10: Display PID feedback (b) (Unit: %)
		11: Display AVI1 in % (1.) (Unit: %)
		12: Display ACI in % (2.) (Unit: %)
		13: Display AVI2 in % (3.) (Unit: %)
		14: Display the temperature of IGBT (i.) (Unit: $^{\circ}C$)
		15: Display the temperature of capacitance (c.) (Unit: $^{\circ}C)$
		16: The status of digital input ON/OFF (i)
		17: The status of digital output ON/OFF (o)
		18: Display the multi-step speed that is executing (S)
		19: The corresponding CPU pin status of digital input (d)
		20: The corresponding CPU pin status of digital output (0.)
		25: Overload counting (0.00~100.00%) (h.) (Unit: %)
		26: GFF Ground Fault (G.) (Unit: %)
		27: DC-Bus voltage ripple (r.) (Unit: VDC)
		28: Display PLC register D1043 data (C) display in hexadecimal
		30 : Display output of user defined (U)
		31 : H page x 00-05 Display user Gain (K)
		34: Operation speed of fan (F.) (Unit: %)
		36: Present operating carrier frequency of drive (Hz) (J.)
		38: Display drive status (6.)
		41: KWH display (J) (Unit: kWh)
		42: PID reference (h) (Unit: %)
		43: PID offset (o.) (Unit: %)
44: PID output frequency (b.) (Unit: Hz)

45: Hardware ID

- It can display negative values when setting analog input bias (Pr.03-03~03-10). Example: assume that AVI1 input voltage is 0V, Pr.03-03 is 10.0% and Pr.03-07 is 4 (Serve bias as the center).
- 2. Example: If REV, MI1 and MI6 are ON, the following table shows the status of the terminals. 0: OFF, 1: ON

Terminal	MI15	MI14	MI13	MI12	MI11	MI10	MI8	MI7	MI6	MI5	MI4	MI3	MI2	MI1	REV	FWD
Status	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0

MI10~MI15 are the terminals for extension cards (Pr.02-26~02-31).

If REV, MI1 and MI6 are ON, the value is 0000 0000 1000 0110 in binary and 0086h in HEX. When Pr.00-04 is set to "16" or "19", it will display "0086h" with LED U is ON on the keypad KPC-CE01. The setting 16 is the status of digital input by Pr.02-12 setting and the setting 19 is the corresponding CPU pin status of digital input, the FWD/REV action and the three-wire MI are not controlled by Pr.02-12. User can set to 16 to monitor digital input status and then set to 19 to check if the wire is normal.

3. Assume that RY1: Pr.02-13 is set to 9 (Drive ready). After applying the power to the AC motor drive, if there is no other abnormal status, the contact will be ON. The display status will be shown as follows.

N.O. switch status:

Terminal	MC)20~	-MC)17	М	D16 ⁻	~MC	13	МС)12~	-MC	10	Reserved	Reserved	RY3	RY2	RY1
Status	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

At the meanwhile, if Pr.00-04 is set to 17 or 20, it will display in hexadecimal "0001h" with LED U is ON on the keypad. The setting 17 is the status of digital output by Pr.02-18 setting and the setting 20 is the corresponding CPU pin status of digital output. User can set 17 to monitor the digital output status and then set to 20 to check if the wire is normal.

4. If Pr.00-04 = 25, when display value reaches 100.00%, the drive will show "oL" as an overload warning.

5. If Pr.00-04 = 38,

bit 0: The drive is running forward.

- bit 1: The drive is running backward.
- bit 2: The drive is ready.
- bit 3: Errors occurred on the drive.
- bit 4: The drive is running.
- bit 5: Warnings on the drive.

✓ 🔐 🖉 – 🖓 与 Coefficient Gain in Actual Output Frequency

Factory Setting: 1.00

Settings 0.00~160.00

This parameter is to set coefficient gain in actual output frequency. Set Pr.00-04= 31 to display the calculation result on the screen (calculation = output frequency * Pr.00-05).

Factory Setting: Read only

Settings Read only

✓ ☐ ☐ - ☐ ☐ Parameter Protection Password Input

Factory Setting: 0

Settings 0~65535

Display 0~4 (the times of password attempts)

- This parameter allows user to enter their password (which is set in Pr.00-08) to unlock the parameter protection and to make changes to the parameter.
- Pr.00-07 and Pr.00-08 are used to prevent the personal miss-operation.
- When the user have forgotten the password, clear the setting by input 9999 and press ENTER key, then input 9999 again and press Enter within 10 seconds. After decoding, all the settings will return to factory setting.

All parameters will be read as 0 when the password is setting, except Pr. 00-08.

Compared a strength of the strengt of the strength of the strength of the strength of the

Factory Setting: 0

Settings 0~65535

- 0: No password protection / password is entered correctly (Pr00-07)
- 1: Password has been set
- To set a password to protect your parameter settings. In the first time, password can be set directly. After setting, the value of 00-08 will become 1, which means password protection is activated. When the password is set, if any parameter setting needs to be changed, be sure to enter correct password in 00-07, and then the password will be inactivated temporarily with 00-08 changing to 0. At this time, parameters setting can be changed. After setting, re-power the motor drive, and password will be activated again.
- To cancel the password protection, after entering correct password in 00-07, 00-08 also needs to be set as 0 again to inactive password protection permanently. If not, password protection will be active after motor drive re-power.
- The keypad copy function will work normally only when the password protection is inactivated temporarily or permanently, and password set in 00-08 will not be copied to keypad. So when copying parameters from keypad to motor drive, the password need to be set manually again in the motor drive to active password protection.

Password Decode Flow Chart

Password Setting 00-08	Password Forgotten	Password Incorrect	
Displays 01 after correct password is entered to Pr.00-08.	Enter 9999 and press ENTER, then enter 9999 again within 10 seconds and press ENTER. Then all parameters will reset to factory settings.	3 chances of password input: Incorrect password 1: displays "01" Incorrect password 2: displays "02" Incorrect password 3: "Pcode"(blinking)	
		Keypad will be locked after 3 wrong attempted passwords. To re-activate the keypad, please reboot the drive and input the correct password.	

G - ; ; Control of Speed Mode

Factory Setting: 0

Settings 0: VF (IM V/F control)

2: SVC(IM/PM sensorless vector control)

This parameter determines the control method of the AC motor drive:

0: (IM V/f control): user can design proportion of V/f as required and can control multiple motors simultaneously.

2: (IM/PM Sensorless vector control): get the optimal control by the auto-tuning of motor parameters.

When 00-10=0, and set Pr.00-11 to 0, the V/F control diagram is shown as follows.

DC BUS

When 00-10=0, and set Pr.00-11 to 2, the sensorless vector control diagram is shown as follows.


```
Factory Setting: 0
```

Settings 0: Light load

1: Normal load

- Light duty of 230V & 460V: overload ability is 120% rated output current in 60 seconds. Please refer to Pr.00-17 for the setting of carrier. Refer to chapter 9 (specifications) or Pr.00-01 for the rated current.
- Normal duty of 230V & 460V: overload ability is 120% rated output current in 60 seconds (over load ability is 160% rated output current in 3 seconds). Please refer to Pr.00-17 for the setting of carrier wave. Refer to chapter 9 (specifications) or Pr.00-01 for the rated current.
- Pr.00-01 changes as the setting of Pr.00-16 changes. The default setting and maximum setting range of Pr.06-03, 06-04 will change as the setting of Pr.00-16 changes.

Carrier Frequency

Factory setting: Table below

Settings 2~15kHz

Description: This parameter determinates the PWM carrier frequency of the AC motor drive.

		2	30V	
Settings		2~15kHz	2~10kHz	2~9kHz
	Models	1~20HP [0.75~15kW]	25~60HP [18.5~45kW]	75~125HP [55~90kW]
Light Duty	Factory Setting	8kHz	6kHz	4kHz
Normal Duty	Models	0.5~15HP [0.4~11kW]	20~50HP [15~37kW]	60~100HP [45~75kW]
	Factory Setting	8kHz	6kHz	4kHz

		4	60V	
Settings		2~15kHz	2~10kHz	2~09kHz
	Models	1~25HP [0.75~18.5kW]	30~100HP [22~75kW]	125~536HP [90~400kW]
Light Duty	Factory Setting	8kHz	6kHz	4kHz
Normal Duty	Models	0.5~20HP [0.4~15kW]	25~75HP [18.5~55kW]	100~475HP [75~355kW]
	Factory Setting	8kHz	6kHz	4kHz

l		575V	690V
Sett	ings	2~9kHz	2~09kHz
	Models	2~20HP [1.5~15kW]	25~745 [18.5~560kW]
Light Duty	Factory Setting	4kHz	4kHz*1
Normal	Models	2~20HP [1.5~15kW]	25~745 [18.5~560kW]
Duty	Factory Setting	4kHz	4kHz*1

*1. Light duty / Normal duty: the factory setting of 690V, 630kW [850HP] is 3 kHz.

- From the table, we see that the PWM carrier frequency has a significant influence on the electromagnetic noise, AC motor drive heat dissipation, and motor acoustic noise. Therefore, if the surrounding noise is greater than the motor noise, lower the carrier frequency is good to reduce the temperature rise. Although it is quiet operation in the higher carrier frequency, the entire wiring and interference resistance should be considerate.
- When the carrier frequency is higher than the factory setting, it needs to protect by decreasing the carrier frequency. See Pr.06-55 for the related setting and details.

- 8: Communication card (no CANopen card)
- It is used to set the source of the master frequency in AUTO mode.
- Pr.00-20 and 00-21 are for the settings of frequency source and operation source in AUTO mode. Pr.00-30 and 00-31 are for the settings of frequency source and operation source in HAND mode. The AUTO/HAND mode can be switched by the keypad KPC-CC01 or multi-function input terminal (MI).
- The factory setting of frequency source or operation source is for AUTO mode. It will return to AUTO mode whenever power on again after power off. If there is multi-function input terminal used to switch AUTO/HAND mode. The highest priority is the multi-function input terminal. When the external terminal is OFF, the drive won't receive any operation signal and can't execute JOG.

Freerunning to stop

STOP

Time

Coast to stop: the AC motor drive stops the output instantly upon a STOP command and the motor free runs until it comes to a complete standstill.

Ramp to stop: the AC motor drive decelerates from the setting of deceleration time to 0 or

(1) It is recommended to use "ramp to stop" for safety of personnel or to prevent material from being wasted in applications where the motor has to stop after the drive is stopped. The deceleration time has to be set accordingly.

ime

Rampto Stop and Coast to Stop

Oper ation

Command

RUN

Stops according to

deceleration time

(2) If the motor free running is allowed or the load inertia is large, it is recommended to select "coast to stop". For example, blowers, punching machines and pumps

Oper ation

Command

RUN

minimum output frequency and then stop (by Pr.01-07).

Factory Setting: 0

Settings 0: Enable forward/ reverse

- 1: Disable reverse
- 2: Disable forward

□ This parameter enables the AC motor drives to run in the forward/reverse direction. It may be used to prevent a motor from running in a direction that would consequently injure the user or damage the equipment.

	88	3-24	Memory of	of Digital Operator (Keypad) Frequency C	ommand	
					Factory Setting:	Read Only
			Settings	Read only		
		lf keypa	ad is the s	ource of frequency command, when Lv o	or Fault occurs the	present frequency
		comma	nd will be s	saved in this parameter.		
×	80	25-25	User Defi	ned Characteristics		
					Fa	ctory Setting: 0
			Settings	bit 0~3: user defined decimal place		
				0000h – 0000b: no decimal place		
				0001h – 0001b: one decimal place		
				0002h – 0010b: two decimal place		
				0003h – 0011b: three decimal place		
				bit 4~15: user defined unit		
				000xh: Hz		
				001xh: rpm		
				002xh: %		
				003xh: kg		
				004xh: m/s		
				005xh: kW		
				006xh: HP		
				007xh: ppm		
				008xh: 1/m		
				009xh: kg/s		
				00Axh: kg/m		
				00Bxh: kg/h		
				00Cxh: lb/s		
				OUFXII: II/S		
				012 yb		
				0.15 mbar		
				016xh [·] bar		
				017xh [.] Pa		

019xh: mWG 01Axh: inWG 01Bxh: ftWG 01Cxh: psi 01Dxh: atm 01Exh: L/s 01Fxh: L/m 020xh: L/h 021xh: m3/s 022xh: m3/h 023xh: GPM 024xh: CFM		
01Axh: inWG 01Bxh: ftWG 01Cxh: psi 01Dxh: atm 01Exh: L/s 01Fxh: L/m 020xh: L/h 021xh: m3/s 022xh: m3/h 023xh: GPM 024xh: CFM	019xh: mWG	
01Bxh: ftWG 01Cxh: psi 01Dxh: atm 01Exh: L/s 01Fxh: L/m 020xh: L/h 021xh: m3/s 022xh: m3/h 023xh: GPM 024xh: CFM	01Axh: inWG	
01Cxh: psi 01Dxh: atm 01Exh: L/s 01Fxh: L/m 020xh: L/h 021xh: m3/s 022xh: m3/h 023xh: GPM 024xh: CFM	01Bxh: ftWG	
01Dxh: atm 01Exh: L/s 01Fxh: L/m 020xh: L/h 021xh: m3/s 022xh: m3/h 023xh: GPM 024xh: CFM	01Cxh: psi	
01Exh: L/s 01Fxh: L/m 020xh: L/h 021xh: m3/s 022xh: m3/h 023xh: GPM 024xh: CFM xxxxh: Hz	01Dxh: atm	
01Fxh: L/m 020xh: L/h 021xh: m3/s 022xh: m3/h 023xh: GPM 024xh: CFM xxxxh: Hz	01Exh: L/s	
020xh: L/h 021xh: m3/s 022xh: m3/h 023xh: GPM 024xh: CFM xxxxh: Hz	01Fxh: L/m	
021xh: m3/s 022xh: m3/h 023xh: GPM 024xh: CFM xxxxh: Hz	020xh: L/h	
022xh: m3/h 023xh: GPM 024xh: CFM xxxxh: Hz	021xh: m3/s	
023xh: GPM 024xh: CFM xxxxh: Hz	022xh: m3/h	
024xh: CFM xxxxh: Hz	023xh: GPM	
xxxxh: Hz	024xh: CFM	
	xxxxh: Hz	

- □ bit 0~3: Control F page, unit of user defined value (Pr00-04 =d10, PID feedback) and the decimal point of Pr00-26 which supports up to 3 decimal points.
- □ bit 4~15: Control F page, unit of user defined value (Pr00-04=d10, PID feedback) and the display units of Pr00-26.

The keypad should be set to decimal when setting parameters. Example: defined unit shows inWG and three decimal place. In above data we could find inWG corresponds to 01Axh (x as the setting place of the decimal place), and three decimal place corresponds to 0003h, which shows 01A3h in hexadecimal, and 01A3h=419 when turns to decimal. Set Pr.00-25=419, then the setting is completed.

88-88	Max. Use	r Defined Value	
			Factory Setting: 0
	Settings	0: Disable	
		0~65535 (when Pr.00-25 set to no decimal place)	
		0.0~6553.5 (when Pr.00-25 set to 1 decimal place)	
		0.00~655.35 (when Pr.00-25 set to 2 decimal place)	
		0.000~65.535 (when Pr.00-25 set to 3 decimal place)	
M When	Dr 00.26 is	NOT set to 0. The user defined value is enabled	The value of thi

When Pr.00-26 is NOT set to 0. The user-defined value is enabled. The value of this parameter should correspond to the frequency setting at Pr.01-00. Example:

When the frequency at Pr. 01-00=60.00Hz, the max. user-defined value at Pr. 00-26 is 100.0%. That also means Pr.00-25 is set at 0021h to select % as the unit.

The drive will display as Pr.00-25 setting when Pr.00-25 is properly set and Pr.00-26 is not 0.

 User Defined Value

 Factory Setting: Read only

 Settings
 Read only

 Pr.00-27 will show user defined value when Pr.00-26 is not set to 0.

 User defined value is only valid in Pr. 00-20, with frequency source input from keypad or RS-485.

GG - 28 Switching from Auto mode to Hand mode

Settings bit0: Sleep Function Control Bit

- 0: Sleep Function Control Bit
- 1: Sleep function and Auto mode are the same
- bit1: Unit of the Control Bit
 - 0: Displaying Unit in Hz
 - 1: Same unit as the Auto mode
- bit2: PID Control Bit
 - 0: Cancel PID control
 - 1: PID control and Auto mode are the same.
- bit3: Frequency Source Control Bit
 - 0: Frequency command set by parameter, if the multi-step speed is activated, then multi-step speed has the priority.
 - 1: Frequency command set by Pr00-30, regardless if the multi-speed is activated.

LOCAL/REMOTE Selection

Factory Setting: 0

Factory Setting: 0

Settings 0: Standard HOA function

- 1: Switching Local/Remote, the drive stops
- 2: Switching Local/Remote, the drive runs as the REMOTE setting for frequency and operation status
- 3: Switching Local/Remote, the drive runs as the LOCAL setting for frequency and operation status
- 4: Switching Local/Remote, the drive runs as LOCAL setting when switch to Local and runs as REMOTE setting when switch to Remote for frequency and operation status.
- The factory setting of Pr.00-29 is 0 (standard Hand-Off-Auto function). The AUTO frequency and source of operation can be set by Pr.00-20 and Pr.00-21, and the HAND frequency and source of operation can be set by Pr.00-30 and Pr.00-31. AUTO/HAND mode can be selected or switched by using digital keypad (KPC-CC01) or setting multi-function input terminal MI= 41, 42.
- When external terminal MI is set to 41 and 42 (AUTO/HAND mode), the settings Pr.00-29=1,2,3,4 will be disabled. The external terminal has the highest priority among all command, Pr.00-29 will always function as Pr.00-29=0, standard HOA mode.

- When Pr.00-29 is not set to 0, Local/Remote function is enabled, the top right corner of digital keypad (KPC-CC01) will display "LOC" or "REM". The REMOTE frequency and source of operation can be set by Pr.00-20 and Pr.00-21, and the LOCAL frequency and source of operation can be set by Pr.00-30 and Pr.00-31. Local/Remote function can be selected or switched by using digital keypad (KPC-CC01) or setting external terminal MI=56. The AUTO key of the digital keypad now controls for the REMOTE function and HAND key now controls for the LOCAL function.
- When MI is set to 56 for LOC/REM selection, if Pr.00-29 is set to 0, then the external terminal is disabled.
- When MI is set to 56 for LOC/REM selection, if Pr.00-29 is not set to 0, the external terminal has the highest priority of command and the ATUO/HAND keys will be disabled.

00-30	Source of	f the Master Frequency Command(HAND)	
			Factory Setting: 0
	Settings	0: Digital keypad	
		1: RS-485 serial communication	
		2: External analog input (Pr.03-00)	
		3: External UP/DOWN terminal	
		6: CANopen communication card	
		8: Communication card (no CANopen card)	
🚇 It is use	ed to set th	e source of the master frequency in HAND mode.	

GG - 3 Contract Source of the Operation Command (HAND)

Factory Setting: 0

Settings 0: Digital keypad

- 1: External terminals. Keypad STOP disabled.
- 2: RS-485 serial communication. Keypad STOP disabled.
- 3: CANopen communication card
- 5: Communication card (not include CANopen card
- \square It is used to set the source of the operation frequency in HAND mode.
- Pr.00-20 and 00-21 are for the settings of frequency source and operation source in AUTO mode. Pr.00-30 and 00-31 are for the settings of frequency source and operation source in HAND mode. The AUTO/HAND mode can be switched by the keypad KPC-CC01 or multi-function input terminal (MI).
- The factory setting of frequency source or operation source is for AUTO mode. It will return to AUTO mode whenever power on again after power off. If there is multi-function input terminal used to switch AUTO/HAND mode, the highest priority is the multi-function input terminal. When the external terminal is OFF, the drive won't receive any operation signal and can't execute JOG.

✓ 00-32 Digital Keypad STOP Function

Factory Setting: 0

Settings 0: STOP key disable 1: STOP key enable

This parameter works when the source of operation command is not digital keypad (Pr00-21 \neq 0). When Pr00-21=0, the stop key will not follow the setting of this parameter.

Description: This parameter displays the drive's software version by date.

01 Basic Parameters

✓ This parameter can be set during operation.

Maximum Output Frequency

Factory Setting: 60.00/50.00

Settings 50.00~599.00Hz

Setting range for / including 230V, 55kW: 0.00~400.00Hz Setting range for / including 460V, 90kW: 0.00~400.00Hz

Setting Range for /including 575V / 690V: 599.00Hz

This parameter determines the AC motor drive's Maximum Output Frequency. All the AC motor drive frequency command sources (analog inputs 0 to +10V, 4 to 20mA, 0 to 20mA \pm 10V) are scaled to correspond to the output frequency range.

Minimum Carrier Wave Requirement	Maximum Output Frequency (IM VF/ IM SVC)
2k	200 Hz
3k	300 Hz
4k	400 Hz
5k	500 Hz
6k	599 Hz

230V series 55kW and above, maximum output frequency is 400Hz (carrier should be set at least 4k) 460V series 90kW and above, maximum output frequency is 400Hz (carrier should be set at least 4k) 575V/690V series, maximum output frequency is 599Hz

() I - **()** IMaximum Output Frequency of Motor 1 (base frequency and motor rated frequency)**()** I - **35**Output Frequency of Motor 2 (base frequency and motor rated frequency)

Factory Setting: 60.00/50.00

Settings 0.00~599.00Hz

This value should be set according to the rated frequency of the motor as indicated on the motor nameplate. If the motor is 60Hz, the setting should be 60Hz. If the motor is 50Hz, it should be set to 50Hz.

Ū	1-02	Maximum Output Voltage of Motor 1 (base frequency and motor rated frequency)
Ū	1-38	Output Voltage of Motor 2 (base frequency and motor rated frequency)

Factory Setting: 200.0/400.0/ 575.0/660.0

Settings 230V series: 0.0V~255.0V 460V series: 0.0V~510.0V 575V series: 0.0V~637.0V 690V series: 0.0V~765.0V

- This value should be set according to the rated voltage of the motor as indicated on the motor nameplate. If the motor is 220V, the setting should be 220.0. If the motor is 200V, it should be set to 200.0.
- There are many motor types in the market and the power system for each country is also difference. The economic and convenience method to solve this problem is to install the AC motor drive. There is no problem to use with the different voltage and frequency and also can amplify the original characteristic and life of the motor.

	0,02	NALL 1		
	01-03	wiid-point	Frequency 1 of Motor 1	
				Factory Setting: 3.00/3.00/
		•		0.0/0.0
		Settings	230V series: 0.00~599.00Hz	
			460V series: 0.00~599.00Hz	
			575V series: 0.00~599.00Hz	
			690V series: 0.00~599.00Hz	
N	01-04	Mid-point	Voltage 1 of Motor 1	
				Factory Setting: 11.0/22.0/
				0.0/0.0
		Settings	230V series: 0.0V~240.0V	
			460V series: 0.0V~480.0V	
			575V series: 0.0V~637.0V	
			690V series: 0.0V~720.0V	
				690V, 185kW and above series: 10.0
	01-37	Mid-point	Frequency 1 of Motor 2	
				Factory Setting: 3.00
		Settings	0.00~599.00Hz	
N	8 - 38	Mid-point	Voltage 1 of Motor 2	
				Factory Setting: 11.0/22.0/
				0.0/0.0
		Settings	230V series: 0.0V~240.0V	
			460V series: 0.0V~480.0V	
			575V series: 0.0V~637.0V	
			690V series: 0.0V~720.0V	
				690V, 185kW and above series: 10.0
	01-05	Mid-point	Frequency 2 of Motor 1	
				Factory Setting: 1.50
		Settings	0.00~599.00Hz	
N	01-08	Mid-point	Voltage 2 of Motor 1	
				Factory Setting: 5.0/10.0/
				0.0/0.0
		Settings	230V series: 0.0V~240.0V	
		5	460V series: 0.0V~480.0V	
			575V series: 0.0V~637.0V	
			690V series: 0.0V~720.0V	
				690V. 185kW and above series [.] 2.0
	<u>[] - 39</u>	Mid-point	Frequency 2 of Motor 2	
				Factory Setting: 1 50
		Settinas	0.00~599.00Hz	. settery county. not
		90		

×	81-48	Mid-point	Voltage 2 of Motor 2	
-				Factory Setting: 5.0/10.0/
				0.0/0.0
		Settings	230V series: 0.0V~240.0V	
			460V series: 0.0V~480.0V	
			575V series: 0.0V~637.0V	
			690V series: 0.0V~720.0V	
				690V, 185kW and above series: 2.0
	01-07	Min. Outp	out Frequency of Motor 1	
				Factory Setting: 0.50
		Settings	0.00~599.00Hz	
×	0:-08	Min. Outp	out Voltage of Motor 1	
				Factory Setting: 1.0/2.0/
				0.0/0.0
		Settings	230V series: 0.0V~240.0V	
			460V series: 0.0V~480.0V	
			575V series: 0.0V~637.0V	
			690V series: 0.0V~720.0V	
	0:-4:	Min. Outp	out Frequency of Motor 2	
				Factory Setting: 0.50
		Settings	0.00~599.00Hz	
×	01-45	Min. Outp	out Voltage of Motor 2	
				Factory Setting: 1.0/2.0/
				0.0/0.0
		Settings	230V series: 0.0V~240.0V	
			460V series: 0.0V~480.0V	
			575V series: 0.0V~637.0V	
			690V series: 0.0V~720.0V	

- □ V/F curve setting is usually set by the motor's allowable loading characteristics. Pay special attention to the motor's heat dissipation, dynamic balance, and bearing lubricity, if the loading characteristics exceed the loading limit of the motor.
- There is no limit for the voltage setting, but a high voltage at low frequency may cause motor damage, overheat, and stall prevention or over-current protection. Therefore, please use the low voltage at the low frequency to prevent motor damage.
- Pr.01-35 to Pr.01-42 is the V/F curve for the motor 2. When multi-function input terminals Pr.02-01~02-08 and Pr.02-26 ~Pr.02-31 are set to 14 and enabled, the AC motor drive will act as the 2nd V/F curve.
- The V/F curve for the motor 1 is shown as follows. The V/f curve for the motor 2 can be deduced from it.

Common settings of V/F curve:

III - III Start-Up Frequency

Factory Setting: 0.50

Settings 0.00~599.00Hz

When start frequency is higher than the min. output frequency, drives' output will be from start frequency to the setting frequency. Please refer to the following diagram for details.

Fcmd=frequency command,

Fstart=start frequency (Pr.01-09),

fstart=actual start frequency of drive,

Fmin=4th output frequency setting (Pr.01-07/Pr.01-41),

Flow=output frequency lower limit (Pr.01-11)

Start-up Flow Chart

Generation Field Ferrit Ferrit

If Flow<Fcmd, drive will run with Fcmd directly.

If Flow>=Fcmd, drive will run with Fcmd firstly, then accelerate to Flow according to acceleration time.

The drive's output will stop immediately when output frequency has reach to Fmin during deceleration.

[] | -18 **Output Frequency Upper Limit**

Factory Setting: 599.00

Settings 0.00~599.00Hz

× 🗄 |- |

Output Frequency Lower Limit

Factory Setting: 0.00

Settings 0.00~599.00Hz

- □ The upper/lower output frequency setting is used to limit the actual output frequency. If the frequency setting is higher than the upper limit (01-10), it will run with the upper limit frequency. If output frequency lower than output frequency lower limit (01-11) and frequency setting is higher than min. frequency (01-07), it will run with lower limit frequency. The upper limit frequency should be set to be higher than the lower limit frequency. Pr.01-10 setting must be ≥ Pr.01-11 setting.
- Upper output frequency will limit the max. output frequency of drive. If frequency setting is higher than Pr.01-10, the output frequency will be limited by Pr.01-10 setting.
- When the drive starts the function of slip compensation (Pr.07-27) or PID feedback control, drive output frequency may exceed frequency command but still be limited by this setting.
- Related parameters: Pr.01-00 Max. Operation Frequency and Pr.01-11 Output Frequency Lower Limit

- Lower output frequency will limit the min. output frequency of drive. When drive frequency command or feedback control frequency is lower than this setting, drive output frequency will limit by the lower limit of frequency.
- When the drive starts, it will operate from min. output frequency (Pr.01-07) and accelerate to the setting frequency. It won't limit by lower output frequency setting.
- The setting of output frequency upper/lower limit is used to prevent personal miss-operation, overheat due to too low operation frequency or damage due to too high speed.
- □ If the output frequency upper limit setting is 50Hz and frequency setting is 60Hz, max. output frequency will be 50Hz.

- □ If the output frequency lower limit setting is 10Hz and min. operation frequency setting (Pr.01-07) is 1.5Hz, it will operate by 10Hz when the frequency command is greater than Pr.01-07 and less than 10Hz. If the frequency command is less than Pr.01-07, the drive will be in ready status and no output.
- □ If the frequency output upper limit is 60Hz and frequency setting is also 60Hz, only frequency command will be limit in 60Hz. Actual frequency output may exceed 60Hz after slip compensation.

~	C !- !? Accel. Time 1
×	C I - I B Decel. Time 1
×	Image: Contract of the second seco
×	<i>C</i> <i>I</i> - <i>I</i> <i>S</i> Decel. Time 2
N	<i>C I</i> - <i>I E</i> Accel. Time 3
×	C !- !] Decel. Time 3
N	<i>C I</i> - <i>I B</i> Accel. Time 4
×	C I - 19 Decel. Time 4
×	<i>C</i> <i>I</i> - <i>2</i> <i>C</i> JOG Acceleration Time
*	[] ! - 2 ! JOG Deceleration Time

Factory Setting: 10.00/10.0

Settings Pr.01-45=0: 0.00~600.00 seconds

Pr.01-45=1: 0.00~6000.00 seconds

230V/460V/690V · 22kW and above series: 60.00 / 60.0

690V · 160kW and above series: 80.00 / 80.0

- The Acceleration Time is used to determine the time required for the AC motor drive to ramp from 0Hz to Maximum Output Frequency (Pr.01-00).
- The Deceleration Time is used to determine the time require for the AC motor drive to decelerate from the Maximum Output Frequency (Pr.01-00) down to 0Hz.
- The Acceleration/Deceleration Time is invalid when using Pr.01-44 Optimal Acceleration/ Deceleration Setting.
- The Acceleration/Deceleration Time 1, 2, 3, 4 are selected according to the Multi-function Input Terminals settings. The factory settings are Accel./Decel. time 1.
- When enabling torque limits and stalls prevention function, actual accel./decel. time will be longer than the above action time.
- Please note that it may trigger the protection function (Pr.06-03 Over-current Stall Prevention during Acceleration or Pr.06-01 Over-voltage Stall Prevention) when setting of accel./decel. time is too short.
- Please note that it may cause motor damage or drive protection enabled due to over current during acceleration when the setting of acceleration time is too short.
- Please note that it may cause motor damage or drive protection enabled due to over current during deceleration or over-voltage when the setting of deceleration time is too short.
- It can use suitable brake resistor (see Chapter 07 Accessories) to decelerate in a short time and prevent over-voltage.

When enabling Pr.01-24~Pr.01-27, the actual accel./decel. time will be longer than the setting.

✓ ☐ ! - 2 2 JOG Frequency

```
Factory Setting: 6.00
```

Settings 0.00~599.00Hz

- Both external terminal JOG and key "F1" on the keypad KPC-CC01 can be used. When the JOG command is ON, the AC motor drive will accelerate from 0Hz to JOG frequency (Pr.01-22). When the JOG command is OFF, the AC motor drive will decelerate from JOG Frequency to zero. The JOG Accel./Decel. time (Pr.01-20, Pr.01-21) is the time that accelerates from 0.0Hz to Pr.01-22 JOG Frequency.
- The JOG command can't be executed when the AC motor drive is running. In the same way, when the JOG command is executing, other operation commands are invalid.

It does not support JOG function in the optional keypad KPC-CE01.

I I - 2 3 1st/4th Accel./Decel. Frequency

Factory Setting: 0.00

Settings 0.00~599.00Hz

- The transition from acceleration/deceleration time 1 to acceleration/deceleration time 4, may also be enabled by the external terminals. The external terminal has priority over Pr. 01-23.
- When using this function, please set S-curve acceleration time as 0 if 4th acceleration time is set too short.

As the usage of Pr.01-23, for instance, under Pr.01-00=80Hz and Pr.01-23=40Hz:

- a. If Pr.01-02=10s, Pr.01-18=6s, then the 0~40Hz Acc. Time will be around 3s and 40~80Hz Acc. Time will be around 5s at acceleration.
- b. If Pr.01-13=8s, Pr.01-19=2s, then 80~40Hz Dec. Time will be around 4s and 40~0Hz Dec. Time will be around 1s at deceleration.

1st/4th Acceleration/Deceleration Frequency Switching

N	81-24	S-curve Acceleration Begin Time 1
N	01-25	S-curve Acceleration Arrival Time 2
×	81-28	S-curve Deceleration Begin Time 1
×	01-23	S-curve Deceleration Arrival Time 2

Factory Setting: 0.20/0.2

```
Settings Pr.01-45=0: 0.00~25.00 seconds
Pr.01-45=1: 0.00~250.0 seconds
```

- It is used to give the smoothest transition between speed changes. The accel./decel. curve can adjust the S-curve of the accel./decel. When it is enabled, the drive will have different accel./decel. curve by the accel./decel. time.
- \square The S-curve function is disabled when accel./decel. time is set to 0.
- When Pr.01-12, 01-14, 01-16, 01-18 ≥ Pr.01-24 and Pr.01-25,
- The Actual Accel. Time = Pr.01-12, 01-14, 01-16, 01-18 + (Pr.01-24 + Pr.01-25)/2
- □ When Pr.01-13, 01-15, 01-17, 01-19 ≥ Pr.01-26 and Pr.01-27,

The Actual Decel. Time = Pr.01-13, 01-15, 01-17, 01-19 + (Pr.01-26 + Pr.01-27)/2

85-18	Skip Frequency 1 (upper limit)
0:-29	Skip Frequency 1 (lower limit)
0:1-30	Skip Frequency 2 (upper limit)
0:1-3:	Skip Frequency 2 (lower limit)
01-32	Skip Frequency 3 (upper limit)
0:-33	Skip Frequency 3 (lower limit)

Factory Setting: 0.00

Settings 0.00~599.00Hz

- These parameters are used to set the skip frequency of the AC drive. But the frequency output is continuous. There is no limit for the setting of these six parameters and can be used as required.
- The skip frequencies are useful when a motor has vibration at a specific frequency bandwidth. By skipping this frequency, the vibration will be avoided. It offers 3 zones for use.
- The setting of frequency command (F) can be set within the range of skip frequencies. In this moment, the output frequency (H) will be limited by these settings.
- When accelerating/decelerating, the output frequency will still pass the range of skip frequencies.

CIII - 24 Zero-speed Mode

Settings 0: Output waiting

1: Zero-speed operation

- 2: Fmin (Refer to Pr.01-07, 01-41)
- When the frequency is less than Fmin (Pr.01-07 or Pr.01-41), it will operate by this parameter.
- When it is set to 0, the AC motor drive will be in waiting mode without voltage output from terminals U/V/W.
- When setting 1, it will execute DC brake by Vmin(Pr.01-08 and Pr.01-42) in V/F, and SVC modes.
- When it is set to 2, the AC motor drive will run by Fmin (Pr.01-07, Pr.01-41) and Vmin (Pr.01-08, Pr.01-42) in V/F, SVC modes.
- In V/F, SVC modes

V/F Curve Selection

Factory Setting: 0

Factory Setting: 0

Settings 0~15

- U/F curve can be selected from 15 kinds of default settings or set manually.
- Different kinds of V/F curves are shown in the table below. There are 15 kinds of V/F curve to be chosen. Choose a V/F curve suitable for your application then set Pr01-43 by following the V/F curve chosen. The set values of Pr01-00 ~Pr01-08 can be verified and fine-tuned.

ΝΟΤΕ

- 1. If the V/F curve is not selected properly, it may result motor to generate insufficient torque or may lead to high current output due to over fluxing.
- 2. When the motor drive is reset by Pr00-02, Pr01-43 is reset as well.

Setting	SPEC.	Feature	Purpose		
	V/F curve determined	O	For normal application. It is used when the torque		
0	(Pr.01-00~01-08)	Constant torque	of load is firm, and it will not be affected by the		
1			When setting higher newer V//f ourse, it is		
1			lower terring at low frequency and is not		
		Variable torque	suitable for rapid acceleration/deceleration. It		
2	2 nd V/F curve		is recommended NOT to use this parameter		
			for the rapid acceleration/deceleration		
	60Hz (voltage saturation in				
3			For normal application. It is used when the torque		
	72Hz (voltage saturation in	Constant torque	of load is firm, and it will not be affected by the rotor speed of motor.		
4	60Hz)				
5	3 rd decreasing (50Hz)				
6	2 nd decreasing (50Hz)	Decreasing	For fans, pumps, the required torque derating		
7	3 rd decreasing (60Hz)	torque	relative to the load.		
8	2 nd decreasing (60Hz)				
9	Mid. Starting torque (50Hz)		Select high starting torque when:		
10	High starting torque (50Hz)		Longer wiring between the drive and motor		
11	Mid. Starting torque (60Hz)		(exceeds 150 m)		
		High starting	A large amount of starting torque is required		
10	High starting targue (60Hz)	loique	(like lift)		
12			An AC reactor is installed in the output side of		
			the drive		
13	90Hz (voltage saturation in				
13	60Hz)				
14	120Hz (voltage saturation in	Constant output	The curve for operation above 60Hz. To operate		
17	60Hz)	operation	above 60Hz, the output voltage is fixed.		
15	180Hz (voltage saturation in				
15	60Hz)				

When setting to 0, refer to Pr.01-01~01-08 for motor 1 V/f curve. For motor 2, please refer to Pr.01-35~01-42.

When setting to 1 or 2, 2nd and 3rd voltage frequency setting are invalid.

If motor load is variable torque load (torque is in direct proportion to speed, such as the load of fan or pump), it can decrease input voltage to reduce flux loss and iron loss of the motor at low speed with low load torque to raise the entire efficiency.

When setting higher power V/f curve, it is lower torque at low frequency and is not suitable for rapid acceleration/deceleration. It is recommended NOT to use this parameter for the rapid acceleration/deceleration.

✓ ☐ I - ЧЧ Optimal Acceleration/Deceleration Setting

Factory Setting: 0

- Settings 0: Linear accel./decel.
 - 1: Auto accel., linear decel.
 - 2: Linear accel., auto decel.
 - 3: Auto accel./decel. (auto calculate the accel./decel. time by actual load)
 - 4: Stall prevention by auto accel./decel. (limited by 01-12 to 01-21)
- This setting could effectively reduce mechanical vibration from load start-up and stop: it can automatically detect small torque, and accelerate to required frequency with fastest speed and the smoothest start-up current. For deceleration, it evaluates the returned energy from the load, and stop the motor in the shortest time.
- Setting 0 Linear accel./decel.: it will accelerate/decelerate according to the setting of Pr.01-12~01-19.
- Setting to Auto accel./decel.: it can reduce the mechanical vibration and prevent the complicated auto-tuning processes. It won't stall during acceleration and no need to use brake resistor. In addition, it can improve the operation efficiency and save energy.
- Setting 3 Auto accel./decel. (auto calculate the accel./decel. time by actual load): it can auto detect the load torque and accelerate from the fastest acceleration time and smoothest start current to the setting frequency. In the deceleration, it can auto detect the load re-generation and stop the motor smoothly with the fastest decel. time.
- Setting 4 Stall prevention by auto accel./decel. (limited by 01-12 to 01-21): if the acceleration/deceleration is in the reasonable range, it will accelerate/decelerate by Pr.01-12~01-19. If the accel./decel. time is too short, the actual accel./decel. time is greater than the setting of accel./decel. time.

Time Unit for Acceleration/Deceleration and S Curve

Factory Setting: 0

Settings 0: Unit 0.01 sec

1: Unit 0.1 sec

 Image: Constraint of the second state of the second sta

Factory Setting: 1.00

Settings Pr. 01-45=0: 0.00~600.00 sec Pr. 01-45=1: 0.0~6000.0 sec

It is used to set the time that decelerates from the max. operation frequency (Pr.01-00) to 0.00Hz in CANopen control.

1 ! - **! ! Deceleration Method**

Factory Setting: 0

Settings 0: Normal decel.

- 1: Over fluxing decel.
- 2: Traction energy control
- When Pr01-49=0, the drive will decelerate or stop according to original deceleration method.
- When Pr01-49=1: drive will control the deceleration time according to the Pr06-01 setting value and DC BUS voltage.

DC BUS >95% of Pr06-01 Over-voltage Stall Prevention setting value \rightarrow enable Over fluxing deceleration method.

If the $Pr06-01=0 \rightarrow Drive$ will enable Over fluxing deceleration method according to the operating voltage and DC BUS regenerative voltage. This method will refer to the deceleration time setting and the actual deceleration time will be longer than the deceleration time setting.

- Actual deceleration time will be longer than the deceleration time setting because of the Over-voltage Stall Prevention function.
- When Pr01-49=1, please use with the parameter Pr06-02=1 to get a better over voltage suppression effect during deceleration.

Pr01-49=2: this function is based on the drives' ability to auto-adjust output frequency and voltage in order to get faster DC BUS energy consumption and the actual deceleration time will be as much as possible consistent with the deceleration parameter set up time. When real deceleration time does not conform to the expected deceleration time and cause an over-voltage error, recommended to use this setting.

02 Digital Input/Output Parameter

✓ This parameter can be set during operation.

3 - **3 3** 2-wire/3-wire Operation Control

Factory Setting: 0

Settings 0: 2 wire mode 1

1: 2 wire mode 2

2: 3 wire mode

 \square It is used to set the operation control method:

Pr.02-00	Control Circuits of the External Terminal
0 2-wire mode 1 FWD/STOP REV/STOP	FWD/STOP REV/STOP FWD:("OPEN":STOP) ("CLOSE":FWD) REV:("OPEN": STOP) DCM ^("CLOSE": REV) VFD-CP
1 2-wire mode 2 RUN/STOP REV/FWD	RUN/STOP FWD/REV FWD/REV FWD/REV FWD/REV FWD/REV FWD/REV FWD:("OPEN":STOP) ("CLOSE":RUN) REV:("OPEN":STOP) ("CLOSE":RUN) DCM ("CLOSE":RUN) VFD-CP
2 3-wire operation control	OLO FWD "CLOSE":RUN STOP RUN MI1 "OPEN":STOP REV/FWD REV/FWD "OPEN": FWD CLOSE": REV DCM VFD-CP

G2-G Multi-function Input Command 1 (MI1) (MI1= STOP command when in 3-wire operation control)

Factory Setting: 1

B2-B2 Multi-function Input Command 2 (MI2)

Factory Setting: 2

B 2 - **B 3** Multi-function Input Command 3 (MI3)

Multi-function Input Command 4 (MI4)

102-04

Factory Setting: 3

Factory Setting: 4

88-85	Multi-function Input Command 5 (MI5)
88-88	Multi-function Input Command 6 (MI6)
02-07	Multi-function Input Command 7 (MI7)
82-88	Multi-function Input Command 8 (MI8)
82-28	Input terminal of I/O extension card (MI10)
112-20	Input terminal of I/O extension card (MI11)

82-28	Input terminal of I/O extension card (MI12)	
82-28	Input terminal of I/O extension card (MI13)	
82-38	Input terminal of I/O extension card (MI14)	
82-31	Input terminal of I/O extension card (MI15)	
	Factory Setting: 0	

Settings 0~69 Refer to functions list below

- Description: This parameter selects the functions for each multi-function terminal.
- Pr.02-26~Pr.02-29 need the I/O extension card to be entity terminals, or they will be virtual and set as MI10~MI13 when using with optional card EMC-D42A. Pr.02-30~02-31 are virtual terminals.
- When being used as a virtual terminal, it needs to change the status (0/1: ON/OFF) of bit 8-15 of Pr.02-12 by digital keypad KPC-CC01 or communication.
- If Pr.02-00 is set to 3-wire operation control. Terminal MI1 is for STOP contact. Therefore, MI1 is not allowed for any other operation.
- Summary of function settings (Take the normally open contact for example, ON: contact is closed, OFF: contact is open)

Settings	Functions	Descriptions			
0	No Function				
1	Multi-step speed command 1				
2	Multi-step speed command 2	15 step speeds could be conducted through the digital status of the			
3	Multi-step speed command 3	A terminals, and 16 in total if the master speed is included. (Refer Parameter set 4)			
4	Multi-step speed command 4				
5	Reset	After the error of the drive is eliminated, use this terminal to reset the drive.			
6	JOG Command	This function is valid when the source of operation command is external terminals. Before executing this function, it needs to wait for the drive stop completely. During running, it can change the operation direction and STOP key on the keypad is valid. Once the external terminal receives OFF command, the motor will stop by the JOG deceleration time. Refer to Pr.01-20~01-22 for details.			

Settings	Functions	Descriptions				
		01-22 JOG frequ 01-07 Min. output frequ of motor 1 MIx-G	uency JOG	accel. time 01-20		IOG decel. time 01-21 OFF
		When this fu	nction is	enabled,	acceleration and	l deceleration is
		stopped. After	r this func	tion is disa	abled, the AC mo	tor drive starts to
7	Acceleration/deceleration Speed Inhibit	Accel./decel. f Frequen Setting frequency Ac are MIx-GND Operation command	rom the ir cy Ac are cel. inhibit ea Actu	nhibit poin	n frequency	hibit Actual operation — frequency Decel. inhibit area ON OFF
	The 1 st , 2 nd acceleration	The accelerat	tion/decel	eration tin	ne of the drive c	ould be selected
8	or deceleration time	from this func	tion or the	e digital s	tatus of the termi	nals; there are 4
	selection	acceleration/d	leceleratio	on speeds	in total for select	ion.
			MIx=9	MIx=8	Accel./Decel.	
	The 3 rd , 4 th acceleration		OFF	OFF	1 st Accel./Decel.	
9	or deceleration time		OFF	ON	2 nd Accel./Decel	
	selection		ON	OFF	3 rd Accel./Decel.	
			ON	ON	4 th Accel./Decel.	
		For external	fault inpu	it. Motor	drive will deceler	ate by Pr.07-20
10	EF Input	setting and k	eypad wil	II show E	F. (It will have fa	ault record when
	(EF: External fault)	external fault	occurs). L	Jntil the ca	auses of fault elim	ninated, the drive
		can keep runr	ning after	resetting.		
	External B.B. Input	When the con	ntact of thi	is function	is ON, output of	the drive will cut
11	(B.B.: Base Block)	off immediate	ely, and th	ne motor	will be free run	and keypad will
		display B.B. s	ignal. R	eter to Pr.	07-08 for details.	

Settings	Functions	Descriptions
		If the contact of this function is ON, output of the drive will cut off
		immediately, and the motor will then be free run. In addition, once it
		turned to OFF, the drive will accelerate to the setting frequency.
		Voltage
		Setting
12	Output Stop	frequency
	(Output pause)	
		Operation Operation
		command
	Cancel the setting of the	Before using this function, Pr.01-44 should be 01/02/03/04 first.
13	ontimal accel /decel_time	When this function is enabled, OFF is for auto mode and ON is for
		linear accel./decel.
14	Switch between drive	When the contact of this function is ON: use motor 2 parameters.
	settings 1 and 2	OFF: use motor 1 parameters.
		When the contact of this function is ON, the source of the frequency
15	Operation speed	will force to be AVI1. (If the operation speed commands are set to
	command form AVI1	AVI1, ACI and AVI2 at the same time. The priority is $AVI1 > ACI >$
		AVI2)
	Operation speed	will force to be ΔCL (If the operation speed commands are set to
16	command form ACI	AVI1 ACI and $AVI2$ at the same time. The priority is $AVI1 > ACI >$
		AVI2)
		When the contact of this function is ON, the source of the frequency
17	Operation speed	will force to be AVI2. (If the operation speed commands are set to
	command form AVI2	AVI1, ACI and AVI2 at the same time. The priority is AVI1 $>$ ACI $>$
		AVI2)
18	Emergency Stop (07-20)	When the contact of this function is ON, the drive will ramp to stop
		by Pr.07-20 setting.
19	Digital Up command	When the contact of this function is ON, the frequency will be
		increased or decreased (Pr.02-10). If this function is constantly ON,
20	Digital Down command	the frequency will be increased / decreased by Pr.02-09/Pr.02-10.
21	PID function disabled	When the contact of this function is ON, the PID function is
		disabled.
		When the contact of this function is ON, it will clear current counter
22	Clear counter	value and display "0". Only when this function is disabled, it will
		keep counting upward.

Settings	Functions	Descriptions						
23	Input the counter value (multi-function input command 6)	The counter value will increase 1 once the contact of this function is ON. It needs to be used with Pr.02-19.						
24	FWD JOG command	t is valid under external command source. When the contact is ON, the drive will execute forward Jog command.						
25	REV JOG command	t is valid under external command source. When the contact is ON the drive will execute reverse Jog command.						
28	Emergency stop (EF1)	When the contact is ON, the drive will execute emergency stop and display EF1 on the keypad. The motor won't run and be in the free run until the fault is cleared after pressing RESET" (EF: External Fault) Voltage Frequency Setting frequency MIx-GND ON OFF ON Reset OPeration Command						
29	Signal confirmation for Y-connection	When the contact of this function is ON, the drive will operate by 1 st						
30	Signal confirmation for Δ -connection	When the contact of this function is ON, the drive will operate by 2^{nd} V/F						
38	Disable EEPROM write function (Parameters written disable)	When the contact of this function is ON, write to EEPROM is disabled. (Changed parameters will not be saved after power off)						
40	Force coast to stop	When the contact of this function is ON during the operation, the drive will free run to stop.						
41	HAND switch	 When MI switched to off status, it executes a STOP command., If MI switched to off during operation, the drive will 						

Settings	Functions	Descriptions								
		also stop.								
42		2. Using keypad KPC-CC01 to switch between HAND/AUTO, the								
		dri	ve will stop firs	st then switch	to the HAN	ND or AU	TO stat	us.		
		3. On the digital keypad KPC-CC01, it will display current drive								
	AUTO switch	status (HAND/OFF/AUTO).								
				bit '	1	bit 0				
			OFF	0		0				
						1				
			OFF	5 1 - 1		1				
		When d	rive=enable, F	RUN comman	d is valid.					
		When d	rive= disable,	RUN comma	nd is invali	d.				
49	Drive enable	When d	rive is in opera	ation, motor c	oast to sto	p.				
		This fur	Iction will inter	act with MO=	45					
		Input th	e messade se	tting in this pa	arameter w	hen dFb	occurs	to		
50	Slave dEb action to	Master	This will ensu	re dFh also o	ocurs to SI	ave then	Master	r and		
00	execute	Slave w	ill stop simult				Masic			
				aneousiy.						
51	Selection for PLC mode	PLC	status			bit 1	bit 0			
	bit0	Disa	able PLC funct	tion (PLC 0)	1)	0	0			
	Selection for PLC mode	Tria	aer PLC to op	p (PLC 2)	1)	1	0			
52	bit1	Not	unction			1	1			
	Enable CANopen quick	When this function is enabled under CANopen control. it will								
53	stop	change to guick stop. Refer to Chapter 15 for more details								
	UVW magnetic contactor	To rece	anetic							
54	ON/OFF	contactor during output.								
		This pa	rameter needs	to be used w	/ith P02-56	The mai	in nurna	ose is		
		to make sure if mechanical brake works or not after triggering brake								
	Braka ralaasa chacking	release command								
55	signal	If the action is right, mechanical brake will sive signal to MI								
	Signal	terminal								
		Please check time sequence chart for reference								
		Please check time sequence chart for reference.								
		Use Pr.	00-29 to selec	t for LOCAL/H	REMOTE n	node (refe	er to			
		Pr.00-29).								
		When Pr.00-29 is not set to 0, on the digital keypad KPC-CC01 it								
56	LOCAL/REMOTE	will disp	lay LOC/REM	status. (It wil	l display or	n the KPC	C-CC01	if the		
	Selection	firmwar	e version is at	ove version 2	1.021).					
				Bit 0						
			REM	0						
			LOC	1						
50	Enable fire mode with	Enable	this function u	nder fire mod	e to force t	the drive	to run w	vith		
58	RUN Command	forward	or reverse dir	ection (while	there is Rl		MAND).			

Settings	Functions	Descriptions					
50	Enable fire mode	Enable this function under fire mode to force the drive to run (while					
- 59	without RUN Command	there isn't RUN COMMAND).					
00	Disable all the motors	When the multi-motor circulative control is enable, all motors will					
00	Disable all the motors	park freely, when the function terminal set to be ON.					
61	Disable Motor #1						
62	Disable Motor #2						
63	Disable Motor #3	These functions work with multi-motor circulative control, motor #1					
64	Disable Motor #4	to # 8 can be set to park freely. If any of Auxiliary Motor#1 to					
65	Disable Motor #5	Motor#8 is out of order or under maintenance, enable this terminal					
66	Disable Motor #6	to bypass that motor.					
67	Disable Motor #7						
68	Disable Motor #8						
		When the function terminal is setting to ON, if the preheating					
		function is open and drive is in STOP status, the preheating					
69	Preheating Command	function is executed; until the contact status (OFF) or drive status is					
		turned to RUN, the preheating function is stop. Please refer to					
		Pr.02-72~73 for detail.					

✓ ₿ 2 - ₿ 9 UP/DOWN Key Mode

Factory Setting: 0

Settings 0: UP/DOWN by the accel./decel. Time

1: UP/DOWN constant speed (Pr.02-10)

✓ 32 - 13 Constant speed. The Accel. /Decel. Speed of the UP/DOWN Key

Factory Setting: 0.001

Settings 0.001~1.000Hz/ms

- These settings are used when multi-function input terminals are set to 19/20. Refer to Pr.02-09 and 02-10 for the frequency up/down command.
- Pr.02-09 set to 0: it will increase/decrease frequency command (F) by the setting of acceleration/deceleration (Pr.01-12~01-19)

Pr.02-09 set to 1: use multi-function input terminal ON/OFF to increase/decrease the frequency command (F) according to the setting of Pr.02.10 (0.01~1.00Hz/ms).

✓ ☐ 2 - ; ; Digital Input Response Time

Factory Setting: 0.005

Settings 0.000~30.000 sec

- This parameter is used to set the response time of digital input terminals FWD, REV and MI1~MI8.
- It is used for digital input terminal signal delay and confirmation. The delay time is confirmation time to prevent some uncertain interference that would cause error in the input of the digital terminals. Under this condition, confirmation for this parameter would improve effectively, but the response time will be somewhat delayed.

Digital Input Operation Setting

Factory Setting: 0000h

Settings 0000h~FFFFh (0: N.O; 1: N.C)

- Description: The setting of this parameter is in hexadecimal.
- This parameter is to set the status of multi-function input signal (0: Normal Open; 1: Normal Close) and it is not affected by the SINK/SOURCE status.
- L bit 0 is for FWD terminal, bit1 is for REV terminal and bit2 to bit15 is for MI1 to MI14.
- User can change terminal status by communicating.

For example, MI1 is set to 1 (multi-step speed command 1), MI2 is set to 2 (multi-step speed command 2). Then the forward + 2nd step speed command=1001(binary) =9 (Decimal). Pr.02-12=9 needs to be set by communication to run forward with 2nd step speed. No need to wire any multi-function terminal.

Bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
MI15	MI14	MI13	MI12	MI11	MI10	MI8	MI7	MI6	MI5	MI4	MI3	MI2	MI1	REV	FWD

Through the Pr11-42, bit 1, it could make setting of FWD/REV terminals whether are controlled by Pr02-12, bit 0 & 1.

Factory Setting: 11

D - **H** Multi-function Output 2 (Relay2)

Factory Setting: 1

Here and Multi-function Output 3 (Relay3)

Factory Setting: 66 82-36 Output terminal of I/O extension card (MO10) or (RA10) **CP-38** Output terminal of I/O extension card (MO12) or (RA12) 82-39 Output terminal of I/O extension card (MO13) or (RA13) 82-48 Output terminal of I/O extension card (MO14) or (RA14) 02-ч Output terminal of I/O extension card (MO15) or (RA15) **12 - 42** Output terminal of I/O extension card (MO16) <u>[]</u> - 44 Output terminal of I/O extension card (MO18) **UP - 45** Output terminal of I/O extension card (MO19) 82-46 Output terminal of I/O extension card (MO20)

Factory Setting: 0

Settings

0~69 Refer to functions list below

Description of multi-function terminals.

Pr.02-36~Pr.02-41 requires additional extension cards to display the parameters, the choices of optional cards are EMC-D42A and EMC-R6AA.

- The optional card EMC-D42A provides 2 output terminals and can be used with Pr.02-36~02-37.
- The optional card EMC-R6AA provides 6 output terminals and can be used with Pr.02-36~02-41.
- MO16~MO20 are virtual terminals, the operation is controlled by communication Pr. 02-18, bit 11~15 status.
- Summary of function settings (Take the normally open contact for example, ON: contact is closed, OFF: contact is open)

Settings	Functions	Descriptions
0	No Function	
1	Operation Indication	Active when the drive is not at STOP.
	Master Frequency	Active when the AC motor drive reaches the output frequency
2	Attained	setting.
2	Desired Frequency	Active when the desired frequency (Dr 02, 22) is attained
3	Attained 1 (Pr.02-22)	Active when the desired frequency (P1.02-22) is attained.
1	Desired Frequency	Active when the desired frequency (Pr 02.24) is attained
4	Attained 2 (Pr.02-24)	Active when the desired hequency (F1.02-24) is attained.
5	Zero Speed (frequency	Active when frequency command =0. (the drive should be at RUN
5	command)	mode)
6	Zero Speed with Stop	Active when frequency command =0 or ston
0	(frequency command)	Active when hequency command –0 or stop.
7		Active when detecting over-torque. Refer to Pr.06-07 (over-torque
	Over Torque 1	detection level-OT1) and Pr.06-08 (over-torque detection
		time-OT1). Refer to Pr.06-06~06-08.

Settings	Functions	Descriptions						
8	Over Torque 2	Active when detecting over-torque. Refer to Pr.06-10 (over-torque detection level-OT2) and Pr.06-11 (over-torque detection						
		time-OT2). Refer to Pr.06-09~06-11.						
9	Drive Ready	Active when the drive is ON and no abnormality detected.						
10	Low voltage warn (Lv)	Active when the DC Bus voltage is too low. (refer to Pr.06-00 low voltage level)						
11	Malfunction Indication	Active when fault occurs (except Lv stop).						
12	Mechanical Brake Release (Pr.02-32)	When drive runs after Pr.02-32, it will be ON. This function should be used with DC brake and it is recommended to use contact "b" (N.C).						
13	Overheat	Active when IGBT or heat sink overheats, to prevent OH turn off the drive. (refer to Pr.06-15)						
14	Software Brake Signal Indication	Active when the soft brake function is ON. (refer to Pr.07-00)						
15	PID Feedback Error	Active when the feedback signal is abnormal.						
16	Slip Error (oSL)	Active when the slip error is detected.						
17	Terminal Count Value Attained (Pr.02-20; not return to 0)	Active when the counter reaches Terminal Counter Value (Pr.02-20). This contact will not active when Pr.02-20>Pr.02-19.						
18	Preliminary Counter Value Attained (Pr.02-19; returns to 0)	Active when the counter reaches Preliminary Counter Value (Pr.02-19).						
19	External Base Block input (B.B.)	Active when the output of the AC motor drive is shut off during base block.						
20	Warning Output	Active when the warning is detected.						
21	Over-voltage Warning	Active when the over-voltage is detected.						
22	Over-current Stall Prevention Warning	Active when the over-current stall prevention is detected.						
23	Over-voltage Stall prevention Warning	Active when the over-voltage stall prevention is detected.						
24	Operation Mode Indication	Active when the operation command is controlled by external terminal. (Pr.00-21≠0)						
25	Forward Command	Active when the operation direction is forward.						
26	Reverse Command	Active when the operation direction is reverse.						
27	Output when Current ≥ Pr.02-33	Active when current is \geq Pr.02-33.						
28	Output when Current < Pr.02-33	Active when current is < Pr.02-33						
29	Output when frequency ≥ Pr.02-34	Active when frequency is \geq Pr.02-34.						

Settings	Functions	Descriptions					
30	Output when Frequency < Pr.02-34	Active when frequency is <pr.02-34.< td=""></pr.02-34.<>					
31	Y-connection for the	Active when PR.05-24=1, when frequency output is lower than					
	Motor Coil	Pr.05-23 minus 2Hz, lasts for more than 05-25.					
32	Δ -connection for the	Active when PR.05-24=1, when frequency output is higher than					
52	Motor Coil	Pr.05-23 plus 2Hz, lasts for more than 05-25.					
22	Zero Speed (actual	Active when the actual output frequency is 0. (the drive should be					
33	output frequency)	at RUN mode)					
24	Zero Speed with Stop	Active when the actual output frequency is 0 or Stan					
34	(actual output frequency)	Active when the actual output frequency is 0 or Stop.					
25	Error Output Selection 1	Active when Dr. 06.22 in ON					
35	(Pr.06-23)	Active when Pr.06-23 is ON.					
36	Error Output Selection 2						
	(Pr.06-24)	Active when Pr.06-24 IS ON.					
07	Error Output Selection 3						
31	(Pr.06-25)						
38	Error Output Selection 4	Active when Pr.06-26 is ON.					
	(Pr.06-26)						
40	Speed Attained	Active when the output frequency reaches frequency setting or					
	(including STOP)	stop.					
44	Low Current Output	This function needs to be used with Pr.06-71 ~ Pr.06-73					
	UVW Phase Magnet	When the multi-function ML is get to 54 (11)/M/ Dhase Magnet					
45	Contactor ON/ OFF	Contactor Confirm? action the contactor will active					
	Switch						
10		When dEb arises at Master, MO will send a dEb signal to Slave.					
	Mostor dEb signal sutput	Output the message when dEb occurs to Master. This will ensure					
40	iviaster deb signal output	that dEb also occurs to Slave. Then Slave will follow the					
		decelerate time of Master to stop simultaneously.					

Settings	Functions	Descriptions							
		Control multi-function output terminals through CANopen.							
		If to control RY2, then the $Pr02-14 = 50$.							
		The mapping table of the CANopen DO is below:							
		Physical terminal	Setting of related parameters	Attribute	Corresponding Index				
		RY1	02-13 = 50	RW	The bit 0 at 2026-41				
		RY2	02-14 = 50	RW	The bit 1 at 2026-41				
		MO1	02-16 = 50	RW	The bit 3 at 2026-41				
	Output for CANopen	MO2	02-17 = 50	RW	The bit 4 at 2026-41				
50	control	MO10 02 26 - 50			The bit 5 at 2026-41				
		RY10	02-30 - 50	RW	The bit 5 at 2026-41				
		MO11	02.27 - 50		The bit 6 at 2026-41				
		RY11	02-37 - 50	RW	The bit 6 at 2026-41				
		RY12	02-38 = 50	RW	The bit 7 at 2026-41				
		RY13	02-39 = 50	RW	The bit 8 at 2026-41				
		RY14	02-40 = 50	RW	The bit 9 at 2026-41				
		RY15 02-41 = 50 RW The bit 10 at 2026-41							
		Refer to Cha	pter 15-3-5 for	more inform	ation.				
51	Output for InnerCOM control	For RS485 output.							
		For communication output of communication cards (CMC-MOD01, CMC-EIP01, CMC-PN01 and CMC-DN01)							
		Physical terminal	Setting of related parameters	Attribute	Corresponding Address				
		RY1	P2-13 = 51	RW	The bit 0 of 2640				
		RY2	P2-14 = 51	RW	The bit 1 of 2640				
		RY3	P2-15 = 51	RW	The bit 2 of 2640				
52		MO1	P2-16 = 51	RW	The bit 3 of 2640				
	communication card	MO2	P2-17 = 51	RW	The bit 4 of 2640				
		MO3	P2-18 = 51	RW	The bit 5 of 2640				
		MO4	P2-19 = 51	RW	The bit 6 of 2640				
		MO5	P2-20 = 51	RW	The bit 7 of 2640				
		MO6	P2-21 = 51	RW	The bit 8 of 2640				
		MO7	P2-22 = 51	RW	The bit 9 of 2640				
		MO8	P2-23 = 51	RW	The bit 10 of 2640				
53	Fire mode indication	When #58 or	#59 is enabled	this function	n will work				
	Ry page fire mode	When hypas	s function is en	abled in the	fire mode this contact will				
54	by pass life mode	work							
	indication	WOIN.							
Settings	Functions			Descriptions					
----------	---------------------------------------	--	---	--	---	--	--		
55	Motor #1 output								
56	Motor #2 output								
57	Motor #3 output	When setting multi-motor circulative function, the multi-fun output terminal will automatically set up Pr02-13~Pr02-15 Pr02-36~Pr02-40 in accordance with Pr12-01's setting.							
58	Motor #4 output								
59	Motor #5 output								
60	Motor #6 output								
61	Motor #7 output								
62	Motor #8 output								
66	SO contact A (N.O.)		Status of drive	Status of sa N.O. (MO=66) Broken circuit	afety output N.C. (MO=68) Short circuit (Close)				
68	SO contact B (N.C.)		STO	Short circuit (Close)	Broken circuit (Open)				
			STL1~STL3	Short circuit (Close)	Broken circuit (Open)				
67	Analog input signal level achieved	Mi lev Pr Pr If tei If	ulti-function outpu vel is between hig .03-44: Select one AVI2, that i .03-45: The high le .03-46: The low le analog input > Pr minal operates. analog input < Pr	t terminals operate w h level and low level. e of the analog signal s going to be compare evel of analog input, fa vel of analog input, fa r.03-45 upper limit, th r.03-46 lower limit, th utting.	hen analog input signal channel, AVI1, ACI, and ed. actory setting is 50.00% ctory setting is 10.00%. en multi-function output en multi-function output				
69	Output Command of Preheating	Ac	tive when the pre	heating is detected.					

✓ 32 - 18 Multi-function Output Setting

Factory Setting: 0000

Settings 0000h~FFFFh (0:N.O.; 1:N.C.)

Description of this parameter is in hexadecimal.

This parameter is set via bit setting. If a bit is 1, the corresponding multi-function output acts in the opposite way.

Example:

If Pr02-13=1 and Pr02-18=0, Relay 1 is ON when the drive runs and is OFF when the drive is stopped.

If Pr02-13=1 and Pr02-18=1, Relay 1 is OFF when the drive runs and is ON when the drive is stopped.

bit setting

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
MO20	MO19	MO18	MO17	MO16	MO15	MO14	MO13	MO12	MO11	MO10	Rese	erved	RY3	RY2	RY1

32 - 13 Terminal Counting Value Attained (return to 0)

Factory Setting: 0

Settings 0~65500

- The counter trigger can be set by the multi-function terminal MI6 (set Pr.02-06 to 23). Upon completion of counting, the specified multi-function output terminal will be activated (Pr.02-13~02-14, Pr.02-36, 02-37 is set to 18). Pr.02-19 can't be set to 0.
- When the display shows c5555, the drive has counted 5,555 times. If display shows c5555•, it means that real counter value is between 55,550 to 55,559.

× 82-2 Preliminary Counting Value Attained (not return to 0)

Factory Setting: 0

Settings 0~65500

When the counter value counts from 1 and reaches this value, the corresponding multi-function output terminal will be activated, provided one of Pr. 02-13, 02-14, 02-36, 02-37 set to 17 (Preliminary Count Value Setting). This parameter can be used for the end of the counting to make the drive runs from the low speed to stop.

Factory Setting: 60.00/50.00

		Settings	0.00~599.00Hz
N	82-23	The Width	of the Desired Frequency Attained 1
N	88-88	The Width	of the Desired Frequency Attained 2

Factory Setting: 2.00

Settings 0.00~599.00Hz

Once output frequency reaches desired frequency and the corresponding multi-function output terminal is set to 3 or 4 (Pr.02-13, 02-14, 02-36, and 02-37), this multi-function output terminal will be OFF.

When the AC motor drive runs after Pr.02-32 delay time, the corresponding multi-function output terminal (12: mechanical brake release) will be OFF. It has to use this function with DC brake.

If this parameter is used without DC brake, it will be invalid. Refer to the following operation timing.


```
× 82-33
```

Output Current Level Setting for Multi-function Output Terminals

Factory Setting: 0

Settings 0~150%

- When output current is higher or equal to Pr.02-33, it will activate multi-function output terminal (Pr.02-13, 02-14, and 02-15 is set to 27).
- When output current is lower to Pr.02-33, it will activate multi-function output terminal (Pr.02-13, 02-14, and 02-15 is set to 28).

M 12 - 34 Output Boundary for Multi-function Output Terminals

Factory Setting: 3.00

Settings 0.00~599.00Hz

- When output frequency is higher or equal to Pr.02-34, it will activate the multi-function terminal (Pr.02-13, 02-14, and 02-15 is set to 29).
- When output frequency is lower to Pr.02-34, it will activate the multi-function terminal (Pr.02-13, 02-14, 02-15 is set to 30).

B2-35 External Operation Control Selection after Reset and Activate

Factory Setting: 0

Settings 0: Disable

1: Drive runs if the run command still exists after reset or re-boots.

Setting 1: in below situation, the driver will automatically run the command, please pay extra attention

Status 1: After the drive is powered on and the external terminal for RUN keeps ON, the drive will run.

Status 2: After clearing fault, once a fault is detected and the external terminal for RUN keeps ON, the drive can run after pressing RESET key.

Given Example:

If Pr.02-50 displays 0034h (Hex), i.e. the value is 52, and 110100 (binary). It means MI1, MI3 and MI4 are active.

General For Example:

If Pr.02-51 displays 000Bh (Hex), i.e. the value is 11, and 100011 (binary). It means RY1, RY2 and MO10 are active.

Factory Setting: Read only

Settings Monitoring status of PLC external output terminal

P.02-52 shows the external multi-function input terminal that used by PLC.

Given Example:

When Pr.02-52 displays 0034h (hex) and switching to 110100 (binary), it means MI1, MI3 and MI4 are used by PLC.

B2-53 Display External Multi-function Output Terminal occupied by PLC

Factory Setting: Read only

Settings Monitoring status of PLC external multi-function output terminal

P.02-53 shows the external multi-function output terminal that used by PLC.

Given For Example:

If the value of Pr.02-53 displays 0003h (Hex), it means RY1and RY2 are used by PLC.

B2-54 Display the Frequency Command Executed by External Terminal

Factory Setting: Read only

Settings 0.00~599.00Hz (Read only)

When the source of frequency command comes from the external terminal, if Lv or Fault occurs at this time, the frequency command of the external terminal will be saved in this parameter.

J 2 - 7 J IO Card Type							
		Factory setting: Read only					
Settings	0: No IO card						
	1: EMC-BPS01 card						
	2: No IO card						
	3: No IO card						
	4: EMC-D611A card						
	5: EMC-D42A card						
	6: EMC-R6AA card						
	7: No IO card						

✓ 02-12 Output Current Level of Preheating

Factory Setting: 0

Settings 0~100%

- When a motor drive is not in operation (STOP) and is placed in a cold and humid environment, enable the preheating function to output DC current to heat up the motor drive can prevent the invasion of the humidity to the motor drive which creates condensation affecting the normal function of the motor drive.
- This parameter sets the output current level from the motor drive to the motor after enabling the preheating. The percentage of the preheating DC current is 100% to the rated current of the motor drive (Pr.05-01, Pr.05-13, and Pr.05-34). When setting this parameter, increase slowly the percentage to reach the sufficient preheating temperature.

✓ ①2-33 Output Current Cycle of Preheating

Factory Setting: 0

Settings 0~100%

- □ This parameter sets the output current cycle of preheating. 0~100% corresponds to 0~10 seconds. When set to 0%, there is no output current. When set to 100%, there is a continuous output. For example, when set to 50%, a cycle of preheating goes from OFF (5 seconds) to ON (5 seconds) and vice versa.
- Related Parameters of Preheating

Parameter	Description	Setting Range	Explanation
02-72	Output Current Level of Preheating	0~100% (Rated Current of the Motor) 0% No output	
02-73	Output Cycle of Preheating	0~100% (0~10sec) 0% No output 100% Continuous output	
02-01~08 02-26~31	Multi-Input Function Commands (MFI)	69 Preheating Command	Enable or Disable the Preheating
02-13~15 02-36~46	Multi-Output Function Commands (MFO)	69 Output Command of Preheating	Indication of the Preheating

- Enable the Preheating: When Pr02-72 and Pr02-73 are NOT set to zero, the preheating is enabled.
- Preheating Function A: If Pr07-72 and Pr07-23 are set before the motor drive stops operation (STOP), the preheating will be enabled right after the motor drive stops. However if Pr07-72 and Pr07-73 are set after the motor drives stops operation, then preheating will not be enabled. Only

after the motor drive stops again or restarts, the preheating will be enabled.

- Preheating Function B: When motor drive is in operation (RUN) or stops operating (STOP), set Pr02-72 and Pr02-73 between 1%~100% and set MFI= 69 and MFI = On. The preheating will be enabled when the motor drive stops; No matter if the motor drive is in operation (RUN) or stops operating (STOP).
- Operation priority: When both the preheating function A and B are given, the function B has the priority to operate.
- Sequential Diagram of the Preheating Function:

1. Setting Parameters to Enable Preheating (Function A)

Set Pr02-72 and Pr02-73 not equal to zero (Diagram 50%) and stop running the motor drive, then the preheating will be enabled to output DC current. In the meantime, MFO (Output Command of Preheating) will be ON (MFO =69). Once repower on, the preheating function will be enabled right away. Besides, the sequence of preheating goes from OFF (5 seconds) to ON (5 seconds). When the motor is in operation (RUN), the preheating function will be off even it is enabled. Meanwhile, MFO is OFF (MFO =69) and the preheating will be enabled when the motor drive stops.

2. Enable Preheating via Multi-Input Terminals (Function B)

Set Pr02-72 and Pr02-73 (Diagram 50%) not equal to zero and set MFI=69, MFI = ON, then this Function B has the priority to enable/ disable the preheating on the motor drive. In the meantime, the preheating by parameters is automatically ineffective. If, at this moment, the motor drive is already not in operation (STOP), the preheating will be enabled to output DC current and MFO (Output Command of Preheating) will be ON (MFO =69). Besides, the sequence of preheating goes from OFF (5 seconds) to ON (5 seconds). When the motor is in operation (RUN), the preheating function will be off even it is enabled. Meanwhile, MFO is OFF (MFO =69) and the preheating will be enabled when the motor drive stops.

3. Enable DC Brake Function

DC brake and preheating are enabled at the same time. The motor drive operates in the same logic as mentioned above. The only difference is that when the motor drive is in operation (RUN) or stops operating (STOP), DC brake will be enabled first. Then when motor drive stops, preheating will be activated.

03 Analog Input/Output Parameter

✓ This parameter can be set during operation.

corresponds to 0~Pr01-00 (max. operation frequency).

× 03-0

Positive/negative Bias Mode (ACI)

Positive/negative Bias Mode (AVI1)

Positive/negative Bias Mode (AVI2)

Factory Setting: 0

Settings 0: Zero bias

- 1: Lower than or equal to bias
- 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Serve bias as the center
- In a noisy environment, it is advantageous to use negative bias to provide a noise margin. It is recommended NOT to use less than 1V to set the operation frequency.

✓ ☐] - ; ☐ Analog Frequency Command for Reverse Run

Factory Setting: 0

- Settings 0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
 - 1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Run direction cannot be switched by digital keypad or the external terminal control.
- Condition for negative frequency (reverse)
 - 1. Pr03-10=1
 - 2. Bias mode=Serve bias as center
 - 3. Corresponded analog input gain < 0(negative), make input frequency be negative.
- □ In using addition function of analog input (Pr03-18=1), when analog signal is negative after adding, this parameter can be set for allowing reverse or not. The result after adding will be restricted by "Condition for negative frequency (reverse)"

In the diagram below: Black line: Curve with no bias. Gray line: curve with bias

1.

Pr.03-11 Analog Input Gain 1 (AVI 1) = 100%

Frequency Pr.03-07~03-09 (Positive/Negative Bias Mode) 0: No bias 60Hz 1: Lower than or equal to bias 2: Greater than or equal to bias 3: The absolute value of the bias voltage while serving as the center 4: Serve bias as the center Pr.03-10 (Analog Frequency Command for Reverse Run) 6Hz 0: Negative frequency is not valid. -V < 10 9 8 7 6 5 4 3 2 1 Forward and reverse run is controlled 1 2 3 4 5 6 7 8 9 10 by digital keypad or external terminal. 1: Neagative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control. Calculate the bias: $\frac{60-6Hz}{10V} = \frac{6-0Hz}{(0-XV)}$ XV= $\frac{10}{-9}$ =-1.11V $Pr.03-03 = \frac{-1.11}{10} \times 100\% = -11.1\%$ Calculate the gain: $Pr.03-11 = \frac{10V}{11.1V} \times 100\% = 90.0\%$ Pr.00-21=0 (Dgital keypad control and d run in FWD direction) Frequency Pr.03-07~03-09 (Positive/Negative Bias Mode) 60Hz 0: No bias 54Hz 1: Lower than or equal to bias Greater than or equal to bias 2: 3: The absolute value of the bias voltage while serving as the center 4: Serve bias as the center Pr.03-10 (Analog Frequency Command for Reverse Run) 2 3 Negative frequency is not valid. 6 8 9 10 5 Forward and reverse run is controlled

33.

32.

Pr.03-05 Analog Positive Voltage Input Bias (AVI2) =10%

- by digital keypad or external terminal
- 1: Negative frequency is valid. Positive frequency forward run; negative frequency reverse run Direction cannot be switched by digital keypad or external terminal control

Pr.03-13 Analog Input Gain 3 (AVI2)= 100%

Pr.03-14 Analog Input Gain 4 (AVI2)= 100%

34.

Pr.00-21=0 (Dgital keypad control and d run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AVI2) =10%

Pr.03-07~03-09 (Positive/Negative Bias Mode)

- 0: No bias
- 1: Lower than or equal to bias
- 2: Greater than or equal to bias 3: The absolute value of the bias voltage
- while serving as the center
- 4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

- 0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
- 1: Negative frequency is valid. Positive frequency forward run; negative frequency reverse run Direction cannot be switched by digital keypad or external terminal control

Pr.03-13 Analog Input Gain 3 (AVI2)= 100% Pr.03-14 Analog Input Gain 4 (AVI2)= 100%

35.

Pr.03-14 Analog Input Gain 4 (AVI2)= 100%

12.1-03-14

38.

Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AVI2) = 10% Pr.03-07~03-09 (Positive/Negative Bias Mode) 0: No bias

1: Lower than or equal to bias

2: Greater than or equal to bias 3: The absolute value of the bias voltage

while serving as the center 4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run) 0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal. 1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or

external terminal control. Pr.03-13 Analog Input Gain 3 (AVI2)= 100% Pr.03-14 Analog Input Gain 4 (AVI2)= 100%

Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AVI2) = 10% Pr.03-07~03-09 (Positive/Negative Bias Mode)

0: No bias

- 1: Lower than or equal to bias
- 2: Greater than or equal to bias 3: The absolute value of the bias voltage
- while serving as the center

4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run) 0: Negative frequency is not valid.

- Forward and reverse run is controlled
- by digital keypad or external terminal. 1: Negative frequency is valid.
- Positive frequency = forward run;

negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control

Pr.03-13 Analog Input Gain 3 (AVI2)= 100% Pr.03-14 Analog Input Gain 4 (AVI2)= 100%

Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AVI2) = 10%

Pr.03-07~03-09 (Positive/Negative Bias Mode)

- 0: No bias
- 1: Lower than or equal to bias
- 2: Greater than or equal to bias
- 3. The absolute value of the bias voltage while serving as the center

4: Serve bias as the center

- Pr.03-10 (Analog Frequency Command for Reverse Run) 0: Negative frequency is not valid.
 - Forward and reverse run is controlled
 - by digital keypad or external terminal. Negative frequency is valid.

 - Positive frequency = forward run; negative frequency = reverse run.
 - Direction can not be switched by digital keypad or external terminal control

Pr.03-13 Analog Input Gain 3 (AVI2)= 100% Pr.03-14 Analog Input Gain 4 (AVI2)= 100%

44.

*	83-	; ;	Analog Input Gain (AVI1)
×	83-	12	Analog Input Gain (ACI)
×	83-	13	Analog Positive Input Gain (AVI2)
~	83-	14	Analog Negative Input Gain (AVI2)

Settings -500.0~500.0%

Factory Setting: 100.0

Parameters 03-03 to 03-14 are used when the source of frequency command is the analog voltage/current signal.

N	83-	15	Analog Input Filter Time (AVI1)
N	83-	15	Analog Input Filter Time (ACI)
N	83-	;]	Analog Input Filter Time (AVI2)
			Factory Setting: 0.01

Settings 0.00~20.00 sec

I These input delays can be used to filter noisy analog signal.

When the setting of the time constant is too large, the control will be stable but the control response will be slow. When the setting of time constant is too small, the control response will be faster but the control may be unstable. To find the optimal setting, please adjust the setting according to the control stable or response status.

Factory Setting: 0

Settings 0: Disable (AVI1, ACI, AVI2)

1: Enable

When Pr03-18 is set to 1:

EX1: Pr03-00=Pr03-01=1 Frequency command= AVI1+ACI

EX2: Pr03-00=Pr03-01=Pr03-02=1 Frequency command = AVI1+ACI+AVI2

EX3: Pr03-00=Pr03-02=1 Frequency command = AVI1+AVI2

EX4: Pr03-01=Pr03-02=1 Frequency command = ACI+AVI2

When Pr.03-18 is set to 0 and the analog input setting is the same, the priority for AVI1, ACI and AVI2 are AVI1>ACI>AVI2.

	F Fma x(01-00)
	Fcommand = [(ay bias)*gain]* 10V or 16mA or 20mA
	Fcommand: the corresponding
	frequency for 10V or 20m A
	ay:0-10V, 4-20mA, 0-20mA
	bias : Pr.03-03, Pr. 03-04, Pr.03-05
2	gain: Pr.03-11, Pr.03-12, Pr.03-13, Pr.03-14
/	

Factory Setting: 0

Settings 0: Disable

- 1: Continue operation at the last frequency
- 2: Decelerate to stop
- 3: Stop immediately and display ACE
- This parameter determines the behavior when 4~20mA signal is loss, when AVIc(Pr.03-28=2) or ACIc (03-29=0).
- When Pr.03-28 is not set to 2, it means the voltage input to AVI1 terminal is 0~10V or 0~20mA. At this moment, Pr.03-19 will be invalid.
- When Pr.03-29 is set to 1, it means the voltage input to ACI terminal is for 0~10V. At this moment, Pr.03-19 will be invalid.
- When setting is 1 or 2, it will display warning code "ANL" on the keypad. It will be blinking until the loss of the ACI signal is recovered.
- When setting is 3, and the ACI terminal is disconnected, the keypad will display "ACE" error, then twinkle until the connection is recovered and the error is reset.
- When the motor drive stops, the condition of warning does not exist, then the warning will disappear.

× [

83

Multi-function Output 1 (AFM1)

Multi-function Output 2 (AFM2)

Factory Setting: 0

Settings 0~23

Function Chart						
Settings	Functions	Descriptions				
0	Output frequency (Hz)	Max. frequency Pr.01-00 is regarded as 100%.				
1	Frequency command (Hz)	Max. frequency Pr.01-00 is regarded as 100%.				
2	Motor speed (Hz)	Max. frequency Pr.01-00 is regarded as 100%				
3	Output current (rms)	(2.5 X rated current) is regarded as 100%				
4	Output voltage	(2 X rated voltage) is regarded as 100%				
5	DC Bus Voltage	450V (900V)=100%				
6	Power factor	-1.000~1.000=100%				
7	Power	Rated power is regarded as 100%				
9	AVI1	0~10V/ 0~20mA/ 4~20mA =0~100%				
10	ACI	4~20mA/ 0~10V/ 0~20mA =0~100%				
11	AVI2	0~10V = 0~100%				
20	Output for CANopen control	For CANopen analog output				
21	RS485 analog output	Provide InnerCOM internal communication as control of communication output				
22	Analog output for communication card	For communication output (CMC-MOD01, CMC-EIP01, CMC-PN01, CMC-DN01)				
23	Constant voltage/current output	Pr.03-32 and Pr.03-33 controls voltage/current output level 0~100% of Pr.03-32 corresponds to 0~10V of AFM1. 0~100% of Pr.03-33 corresponds to 0~10V of AFM2.				

Gain of Analog Output 1 (AFM1)

Gain of Analog Output 2 (AFM2)

Factory Setting: 100.0

Settings 0~500.0%

It is used to adjust the analog voltage level (Pr.03-20) that terminal AFM outputs.

 \square This parameter is set the corresponding voltage of the analog output 0.

N	3 - 22 Analog Output 1 when in REV Direction (AFM1)				
×	3 - 25 Analog Output 2 when in REV Direction (AFM2)				
		Factory Setting: 0			
	Settings	0: Absolute value in REV direction			
		1: Output 0V in REV direction; output 0~10V in FWD direction			

2: Output 5-0V in REV direction; output 5~10V in FWD direction

Given Example:

If the value of Pr.03-30 displays 0002h (Hex), it means AFM1and AFM2 are used by PLC.

×	G3-3 AFM2 Output Selection
×	G3-34 AFM1 Output Selection

Settings 0: 0~20mA output

1: 4~20mA output

AFM1 DC Output Setting Level
AFM2 DC Output Setting Level

Factory Setting: 0.00

Factory Setting: 0

Settings 0.00~100.00%

Pair with Multi-Function Output: 23, Pr03-32 and Pr03-33 can output constant AFM voltage.

- Set Pr03-32 between 0 to 100%.00 to correspond to 0~10V of AFM1
- Set Pr03-33 between 0 to 100.00 % to correspond to 0~10V of AFM2

Settings 0.00~20.00 sec.

Factory Setting: 0

Settings 0: AVI1

MO by AI level

1: ACI

2: AVI2

✓ 33-45 Al Upper level

83-44

Factory Setting: 50.00

Settings -100.00%~100.00%

 Image: Second state
 Image: Second state

 Image:

Factory Setting: 10.00

Settings -100.00%~100.00%

This function requires working with Multi-function Output item "67" Analog signal level achieved. The MO active when AI input level is higher than Pr03-45 AI Upper level. The MO shutoffs when the AI input is lower that Pr03-46 AI Lower level.

Al Upper level (Pr.03-45) must be higher than Al Lower level (Pr. 03-46)

Factory Setting: 7

Settings	0: Regular Curve
----------	------------------

Analog Input Curve Selection

- 1: 3 point curve of AVI1
- 2: 3 point curve of ACI
- 3: 3 point curve of AVI 1& ACI
- 4: 3 point curve of AVI2
- 5: 3 point curve of AVI 1& AVI2
- 6: 3 point curve of ACI & AVI2
- 7: 3 point curve of AVI1 & ACI & AVI2
- Description: This parameter calculates by analog input.
- Set Pr03-50=0, all analog input signal are calculated by using bias and gain.
- Set Pr03-50=1, AVI1 is calculated by using frequency and voltage/current in corresponding format (Pr03-51~Pr03-56), other analog input signals are calculated by using bias and gain.
- Set Pr03-50=2, ACI is calculated by using frequency and voltage/current in corresponding format (Pr03-57~Pr03-62), other analog input signals are calculated by using bias and gain.
- Set Pr03-50=3, AVI1 and ACI are calculated by using frequency and voltage/current in corresponding format (Pr03-51~Pr03-62), other analog input signals are calculated by using bias and gain.
- Set Pr03-50=4, AVI2 is calculated by using frequency and voltage in corresponding format (Pr03-63~Pr03-68), other analog input signals are calculated by using bias and gain.
- Set Pr03-50=5, AVI1 and AVI2 are calculated by using frequency and voltage/current in corresponding format (Pr03-51~Pr03-56 and Pr03-63~Pr03-68), other analog input signal are calculated by using bias and gain.
- Set Pr03-50=6, ACI and AVI2 are calculated by using frequency and voltage/current in corresponding format (Pr03-57~Pr03-68), other analog input signals are calculated by using bias and gain.
- Set Pr03-50=7, all the analog input signals are calculated by using frequency and voltage/current in corresponding format (Pr03-51 ~ Pr03-68)

✓ 3-51 AVI1 Low Point

 Factory Setting: 0.00
 Settings 03-28=0, 0.00~10.00V
 03-28≠0, 0.00~20.00mA

 ✓ 3-52 AVI1 Proportional Low Point

 Factory Setting: 0.00
 Settings -100.00~100.00%
 ✓ 3-53 AVI1 Mid Point
 Factory Setting: 5.00
 Settings 03-28=0, 0.00~10.00V
 O3-28=0, 0.00~10.00V
 Settings 03-28=0, 0.00~10.00V
 Settings 03-28=0, 0.00~20.00mA

The output % will become 0% when the AVI2 input value is lower than low point setting. For example:

any limit. Between two points is a linear calculation.
P03-63 = 1V; P03-64 = 10%. The output will become 0% when AVI2 input is lower than 1V. If the AVI input is swinging between 1V and 1.1V, drive's output frequency will beats between 0% and 10%.

- When AVI1 Selection (Pr03-28) is AVI, the setting range of Pr03-51, Pr03-53, and Pr03-55 have to be 0.00~10.00 or 0.00~20.00.
- When ACI Selection (Pr03-29) is AVI, the setting range of Pr03-57, Pr03-59 and Pr03-61 have to be 0.00~10.00 or 0.00~20.00.
- □ The analog input values can be set at Pr03-51~Pr03-68 and the maximum operating frequency can be set at Pr01-00. The corresponding functions of open-loop control are shown as image below.

1st Step Speed Frequency <u> 8</u>4-8 2nd Step Speed Frequency **3**rd Step Speed Frequency 4th Step Speed Frequency <u>[]</u> 4 - [] 5th Step Speed Frequency 6th Step Speed Frequency 7th Step Speed Frequency 8th Step Speed Frequency 1 <u>1</u> 1 4 - <u>1</u> 9th Step Speed Frequency 10th Step Speed Frequency 11th Step Speed Frequency <u> 17</u>4 -12th Step Speed Frequency 13th Step Speed Frequency 14th Step Speed Frequency 〃 🗄 4 -15th Step Speed Frequency

04 Multi-Step Speed Parameters

✓ This parameter can be set during operation.

Factory Setting: 0.00

Settings 0.00~599.00Hz

- □ The Multi-function Input Terminals (refer to setting 1~4 of Pr.02-01~02-08 and 02-26~02-31) are used to select one of the AC motor drive Multi-step speeds (max. 15th speeds). The speeds (frequencies) are determined by Pr.04-00 to 04-14 as shown in the following.
- The run/stop command can be controlled by the external terminal/digital keypad/communication via Pr.00-21.
- Each one of multi-step speeds can be set within 0.00~599.00Hz during operation.
- Explanation of the timing diagram for multi-step speeds and external terminals The Related parameter settings are:
 - 1. Pr.04-00~04-14: setting multi-step speed (to set the frequency of each step speed)
 - 2. Pr.02-01~02-08, 02-26~02-31: setting multi-function input terminals (multi-step speed 1~4)
 - Related parameters:
 - 01-22 JOG Frequency

02-01 Multi-function Input Command 1 (MI1)

- 02-02 Multi-function Input Command 2 (MI2)
- 02-03 Multi-function Input Command 3 (MI3)
- 02-04 Multi-function Input Command 4 (MI4)

Multi-speed via External Terminals

~	84-58	PLC Buffer 0
*	04-51	PLC Buffer 1
*	04-52	PLC Buffer 2
×	04-53	PLC Buffer 3
×	04-54	PLC Buffer 4
×	04-55	PLC Buffer 5
*	84-56	PLC Buffer 6
/	04-57	PLC Buffer 7
×	04-58	PLC Buffer 8
×	04-59	PLC Buffer 9
×	04-60	PLC Buffer 10
×	84-88	PLC Buffer 11
*	04-65	PLC Buffer 12
*	04-63	PLC Buffer 13
*	04-64	PLC Buffer 14
×	04-65	PLC Buffer 15
×	04-88	PLC Buffer 16
*	04-69	PLC Buffer 17
*	04-88	PLC Buffer 18
×	04-69	PLC Buffer 19

Factory Setting: 0

Settings

0~65535

The Pr 04-50~Pr04-69 can be combined with PLC or HMI programming for variety application.

05 Motor Parameters

✓ This parameter can be set during operation.

05-00	Motor Aut	to Tuning	
		F	actory Setting: 0
	Settings	0: No function	
		1: Rolling test for induction motor(IM) (Rs, Rr, Lm, Lx, no	o-load current)
		[motor running]	
		2: Static test for induction motor [motor not running]	
		5: Dynamic test for PM (SPM) motor [motor running]	
		13: Static test for PM(IPM) motor	

Induction Motor

This parameter can conduct motor parameters auto test. When setting as 1, motor will roll for more than one round.

Press [Run] to begin auto tuning when the setting is done. The measured value will be written into motor 1 (Pr.05-05 ~05-09, Rs, Rr, Lm, Lx, no-load current) and motor 2 (Pr.05-17 to Pr.05-21) automatically.

To begin AUTO-Tuning in rolling test:

- 1. Make sure that all the parameters are set to factory settings (Pr00-02=9 or 10) and the motor wiring is correct.
- 2. Make sure the motor has no-load before executing auto-tuning and the shaft is not connected to any belt or gear motor. It is recommended to set to 2 if the motor can't separate from the load.
- 3. Please set motor related parameters according to motor nameplate.

	Motor 1 Parameter	Motor 2 Parameter
Motor Rated Frequency	01-01	01-35
Motor Rated Voltage	01-02	01-36
Motor Full-load Current	05-01	05-13
Motor Rated Power	05-02	05-14
Motor Rated Speed	05-03	05-15
Motor Pole Numbers	05-04	05-16

- 4. Set Pr.05-00=1 and press [Run], the drive will begin auto-tuning. Please be aware of the motor that it starts spinning as [Run] is pressed.
- 5. When auto-tuning is completed, please check if the measured values are written into motor 1 (Pr.05-05 ~05-09) and motor 2 (Pr.05-17 ~05-21) automatically.
- 6. Mechanical equivalent circuit

If Pr.05-00 is set to 2 (static test), user needs to input the no-load current value of motor into Pr.05-05 for motor 1/Pr.05-17 for motor 2.

- ☑ When auto-tuning 2 motors, it needs to set multi-function input terminals (setting 14) or change Pr.05-22 for motor 1/motor 2 selection.
- ☑ The no-load current is usually 20~50% X rated current.
- The rated speed cannot be greater than or equal to 120f/p (f = rated frequency Pr.01-01/01-35; P: number of motor poles Pr.05-04/05-16).

G 5 - **G 1** Full-load Current of Induction Motor 1 (A)

Factory Setting: Determined by motors power

Settings Determined by motors power

□ This value should be set according to the rated current of the motor as indicated on the motor nameplate. The factory setting is 90% X rated current.

Example: The rated current for 7.5HP (5.5kW) is 25A and factory setting is 22.5A. The range for setting will be 2.5~30A. (25*10%=2.5A and 25*120%=30A)

✓ 35 - 32 Rated Power of Induction Motor 1(kW)

Factory Setting: ###.##

Settings 0~655.35 kW

It is used to set rated power of the motor 1. The factory setting is the power of the drive.

✓ ☐ 5 - ☐ 3 Rated Speed of Induction Motor 1 (rpm)

Factory Setting: 1710

Settings 0~65535

1710(60Hz 4 poles); 1410(50Hz 4 poles)

 \square It is used to set the rated speed of the motor according to the motor nameplate.

 Image: Solution State
 Image: Solution S

Factory Setting: 4

Settings 2~64

- \square It is used to set the number of motor poles (must be an even number).
- Set up Pr.05-04 after setting up Pr. 01-01 and Pr.05-03 to make sure motor operate normally. IM Motor maximum pole refer to Pr01-01 and Pr05-03.
- Get approximate even value 60); therefore, the maximum setting of Pr05-04 could be 60P.
- 35 35 No-load Current of Induction Motor 1 (A)

Factory Setting: ###.##

Settings 0 to the factory setting in Pr.05-01

- □ The factory setting is 40% motor rated current.
- Given For model with 110kW and above, default setting is 20% motor rated current.

The factory setting is 40% motor rated current.

Given For model with 110kW and above, default setting is 20% motor rated current.

	85-18	Stator Resistance (Rs) of Induction Motor 2						
	85-79	Rotor Resistance (Rr) of Induction Motor 2						
				Factory Setting: #.###				
		Settings	0~65.535Ω					
	05-20	Magnetizi	ing Inductance (Lm) of Induction Motor 2					
	85-24	Stator Ind	luctance (Lx) of Induction Motor 2					
				Factory Setting: #.#				
		Settings	0~6553.5 mH					
	85-22	Induction	Motor 1 / 2 Selection					
				Factory Setting: 1				
		Settings	1: Motor 1					
			2: Motor 2					
	🛄 It is use	d to set the	e motor that driven by the AC motor drive.					
N	85-23	Frequenc	y for Y-connection / Δ -connection Switch of Induction I	Vlotor				
				Factory Setting: 60.00				
		Settings	0.00~599.00Hz					
	85-24	Y-connec	tion / Δ -connection Switch of Induction Motor IM					
				Factory Setting: 0				
		Settings	0: Disable					
-			1: Enable					
~	85-25	Delay Tim	e for Y-connection / Δ -connection Switch of Induction	Motor				
-				Factory Setting: 0.200				

Settings 0.000~60.000 sec

- P.05-23~Pr.05-25 are applied in the wide range motors and the motor coil will execute the switch of Y-connection/∆-connection as required. (The wide range motors has relation with the motor design. In general, it has higher torque at low speed and Y-connection and it has higher speed at high speed and connection).
- \square Pr.05-24 is used to enable/disable Y-connection/ Δ -connection Switch.
- When Pr.05-24 is set to 1, the drive will select by Pr.05-23 setting and current motor frequency to switch motor to Y-connection or ∆-connection. At the same time, it will also affect motor parameters.
- \square Pr.05-25 is used to set the switch delay time of Y-connection/ Δ -connection.
- [□] When output frequency reaches Y-connection/△-connection switch frequency, drive will delay by Pr.05-25 before multi-function output terminals are active.

Settings Read only

Settings 0.00~655.35 kW

Set motor rated power in accord to motor nameplate. Default setting is motor drive rated power.

Settings 0~65535 (Unit: V/1000rpm)

06 Protection Parameters

✓ This parameter can be set during operation.

N	Conversion	ge Level	
			Factory Setting:
	Settings	230V series: Frame A~D: 150.0~220.0VDC	180.0
		Frame E and above: 190.0~220.0VDC	200.0
		460V series: Frame A~D: 300.0~440.0VDC	360.0
		Frame E and above: 380.0~440.0VDC	400.0
		575V series: 420.0~520.0VDC	470.0
		690V series: 450.0~660.0VDC	480.0

- This parameter is used to set the Low Voltage level. When the DC BUS voltage is lower than Pr.06-00, drive will stop output and free to stop.
- If the drive is triggered LV fault during the operation, drive will stop output and free to stop. There are three LV faults, LvA (LV during acceleration), Lvd (LV during deceleration), and Lvn (LV in constant speed) which will be triggered in different stage of drive operation. These faults need to be reset manually to restart the drive, while setting restart after momentary power off function (Pr.07-06, Pr.07-07), the drive will restart automatically.
- If LV is triggered when the drive is in stop status, the fault is named LvS (LV during stop), which will not be recorded, and the drive will restart automatically when input voltage is 30Vdc (230V series) or 60Vdc (460V series) higher than LV level.

✓ ⑦ 5 - ⑦ ↓ Over-voltage Stall Prevention

Factory Setting:

Settings	0: Disabled				
	230V series: 0.0~450.0VDC	380.0			
	460V series: 0.0~900.0VDC	760.0			
	575V series: 0.0~1116.0VDC	920.0			
	690V series: 0.0~1318.0VDC	1087.0			

- When Pr.06-01 is set to 0.0, the over-voltage stall prevention function is disabled. When braking units or resistors are connected to the drive, this setting is suggested.
- When the setting is not 0.0, the over-voltage stall prevention is activated. This setting should refer to power supply system and loading. If the setting is too low, then over-voltage stall prevention will be easily activate, which may increase deceleration time.

- Related parameters: Pr.01-13, Pr.01-15, Pr.01-17, Pr.01-19 Decel. Time 1~4, Pr.02-13~Pr.02-15 Multiple-function output (Relay1~3) and Pr.06-02 selection for over-voltage stall prevention.
- Selection for Over-voltage Stall Prevention

Factory Setting: 0

- Settings 0: Traditional over-voltage stall prevention 1: Smart over-voltage prevention
- This function is used for the occasion that the load inertia is unsure. When it stops in the normal load, the over-voltage won't occur during deceleration and fulfill the setting of deceleration time. Sometimes, it may not stop due to over-voltage during decelerating to stop when increasing the load regenerative inertia. At this moment, the AC drive will auto add the deceleration time until drive stop.
- Pr.06-02 is set to 0: During deceleration, the DC bus voltage may exceed its maximum allowable value due to motor regeneration in some situation, such as loading inertia is too high or decel. time is set too short. When traditional over-voltage stall prevention is enabled, the drive will not decelerate further and keep the output frequency constant until the voltage drops below the setting value again.

When Pr.06-02 is set to 1, the drive will maintain DCbus voltage when decelerating and prevent OV.

When the over-voltage stall prevention is enabled, drive deceleration time will be larger than the setting.

When there is any problem as using deceleration time, refer to the following items to solve it.

- 1. Add the suitable deceleration time.
- 2. Add brake resistor (refer to Chapter 7-1 for details) to dissipate the electrical energy that regenerated from the motor as heat type.
- Related parameters: Pr.01-13, Pr.01-15, Pr.01-17, Pr.01-19 Decel. Time 1~4, Pr.02-13~Pr.02-15 Multiple-function output (Relay1~3), and Pr.06-01 over-voltage stall prevention.

✓ ☐ ☐ - ☐ 子 Over-current Stall Prevention during Acceleration

Factory Setting: 120/120/120/120

Settings 230V/460V series Light duty: 0~130% (100%: drive's rated current) Normal duty: 0~160% (100%: drive's rated current) 575V/690V series Light duty: 0~125% (100%: drive's rated current) Normal duty: 0~150% (100%: drive's rated current)

- This parameter is only valid under VF and SVC mode.
- If the motor load is too large or drive acceleration time is too short, the AC drive output current may increase abruptly during acceleration and it may cause motor damage or trigger protection functions (OL or OC). This parameter is used to prevent this situation.
- During acceleration, the AC drive output current may increase abruptly and exceed the value specified by Pr.06-03 due to rapid acceleration or excessive load on the motor. When this function is enabled, the AC drive will stop accelerating and keep the output frequency constant until the current drops below the maximum value.
- When the over-current stall prevention is enabled, drive acceleration time will be larger than the setting.
- When the Over-Current Stall Prevention occurs due to too small motor capacity or in the factory setting, please decrease Pr.06-03 setting.
- When there is any problem by using acceleration time, refer to the following items to solve it.
 - 1. Add the suitable acceleration time.
 - 2. Setting Pr.01-44 Optimal Acceleration/Deceleration Setting to 1, 3 or 4 (auto accel.)
 - Related parameters: Pr.01-12, 01-14, 01-16, 01-18 (settings of accel. time 1~4), Pr.01-44 Optimal Acceleration/Deceleration Setting, Pr.02-13~02-15(Multi-function Output Relay1~3).

Factory Setting: 120/120/120/120

Settings	230V/460V series
	Light duty: 0~130% (100%: drive's rated current)
	Normal duty: 0~160% (100%: drive's rated current)
	575V/690V series
	Light duty: 0~125% (100%: drive's rated current)
	Normal duty: 0~150% (100%: drive's rated current)

- Description: This parameter is only valid under VF and SVC mode.
- It is a protection for drive to auto decrease output frequency when the motor is over-load abruptly during motor constant operation.
- If the output current exceeds the setting specified in Pr.06-04 when the drive is operating, the drive will decrease its output frequency (according to Pr.06-05) to prevent the motor stall. If the output current is lower than the setting specified in Pr.06-04, the drive will accelerate (according to Pr.06-05) again to catch up with the set frequency command value.

over-current stall prevention during operation

It is used to set the accel./decel. time selection when stall prevention occurs at constant speed.

Pr.06-09.

06-06	Over-torc	ue Detection Selection (OT1)
		Factory Setting: 0
	Settings	0: No function
		1: Continue operation after Over-torque detection during constant speed
		operation
		2: Stop after Over-torque detection during constant speed operation
		3: Continue operation after Over-torque detection during RUN
		4: Stop after Over-torque detection during RUN
<u>88-89</u>	Over-torc	ue Detection Selection (OT2)
		Factory Setting: 0
	Settings	0: No function
		1: Continue operation after Over-torque detection during constant speed
		operation
		2: Stop after Over-torque detection during constant speed operation
		3: Continue operation after Over-torque detection during RUN
		4: Stop after Over-torque detection during RUN
When F	Pr.06-06 aı	nd Pr.06-09 are set to 1 or 3, it will display a warning message and won't h
an abn	ormal reco	rd.
When F	Pr.06-06 ar	nd Pr.06-09 are set to 2 or 4, it will display a warning message and will have
abnorm	nal record.	
86-87	Over-torc	ue Detection Level (OT1)
		Factory Setting: 120
	Settings	10 to 200% (100%: drive's rated current)
86-88	Over-torc	ue Detection Level (OT1)
		Factory Setting: 0.1
	Settings	0.0~60.0 sec
86 - 18	Over-toro	ue Detection Level (OT2)
		Factory Setting: 120
	Settings	10 to 200% (100%: drive's rated current)
06-11	Over-toro	ue Detection Time (OT2)
		Factory Setting: 0.1
	Settinas	0.0~60.0 sec
M \//har +	Settings	U.U~6U.U sec

When Pr.06-06 or Pr.06-09 is set to 1 or 3, the motor drive will have the ot1/ot2 warning after Over Torque Detection, while the motor drive will keep running. The warning will be off only until the output current is smaller than the 5% of the over-torque detection level (Pr.06-07 and Pr.06-10).

When Pr.06-06 or Pr.06-09 is set to 2 or 4, the motor drive will have the ot1/ot2 fault after Over Torque Detection. Then the motor drive stop running until it is manually reset.

35 - 12 Current Limit

Factory Setting: 150

Settings 0~200% (100%: drive's rated current)

Pr.06-12 sets the maximum output current of the drive. When it is under VF, SVC control mode, and the output current of the driver exceeds to this current limit, the output frequency will reduce automatically as an over-current stall prevention.

N	88 - 13	Electronic Thermal Relay Selection (Motor 1)	
N	86-27	Electronic Thermal Relay Selection (Motor 2)	
			Factory Setting: 2

Settings 0: Inverter motor (with external forced cooling)

- 1: Standard motor (so motor with fan on the shaft)
- 2: Disable
- It is used to prevent self-cooled motor overheats under low speed. User can use electronic thermal relay to limit driver's output power.
- Setting as 0 is suitable for special motor (motor fan using independent power supply). For this kind of motor, the cooling capacity is not related to motor speed obviously. So the action of electronic thermal relay will remain stable in low speed, which can ensure the motor's load capability in low speed.

- Setting as 1 is suitable for standard motor (motor fan is fixed on the rotor shaft). For this kind of motor, the cooling capacity is low in low speed, and the action of electronic thermal relay will reduce the action time, which ensure the life of motor.
- When the power ON/OFF is often switched, even setting as 0 or 1 cannot protect the motor well. It is because when the power is switched off, the electronic thermal relay protection will be reset. If there are several motors connected to one motor drive, please install electronic thermal relay in each motor respectively.

×	Electronic Thermal Characteristic for Motor 1	
N	16 - 28 Electronic Thermal Characteristic for Motor 2	

Factory Setting: 60.0

Settings 30.0~600.0 sec

- The parameter is set by the 150% of motor rated current and the setting of Pr.06-14 and Pr.06-28 to prevent the motor damaged from overheating. When it reaches the setting, it will display "EoL1/EoL2" and the motor will be in free running.
- □ This parameter is to set the action time of electronic thermal relay. It works based on the I2t characteristic curve of electronic thermal relay, output frequency and current of motor drive, and operation time to prevent motor from over-heat.

The action of electronic thermal relay depends on the setting of Pr.06-13/Pr.06-27.

- 06-13 or 06-27 is set 0 (using special motor) : When output current of motor drive is higher than 150% of motor current (refer to motor cooling curve with independent fan), motor drive will start to count the time. When the accumulated time exceeds Pr.06-14 or 06-28, electronic thermal relay will act.
- 06-13 or 06-27 is set 1 (using standard motor) : When output current of motor drive is higher than 150% of motor current (refer to motor cooling curve with shaft-fixed fan), motor drive will start to count the time. When the accumulated time exceeds Pr.06-14 or 06-28, electronic thermal relay will act.
- 3. If 05-01 do not have setting current, the current will be 90% of Pr00-01 motor drive current.
- The real electronic thermal relay action time will adjust with drive output current (shown as motor loading rate). When the current is high, the action time is short; when the current is low, the action time is long. Please refer to following chart:

- **Second Second 5**
- **G - 2 - 2 - Fault Record 6**
 - Settings

0: No fault record

- 1: Over-current during acceleration (ocA)
- 2: Over-current during deceleration (ocd)
- 3: Over-current during constant speed(ocn)
- 4: Ground fault (GFF)
- 5: IGBT short-circuit (occ)
- 6: Over-current at stop (ocS)
- 7: Over-voltage during acceleration (ovA)
- 8: Over-voltage during deceleration (ovd)
- 9: Over-voltage during constant speed (ovn)
- 10: Over-voltage at stop (ovS)
- 11: Low-voltage during acceleration (LvA)
- 12: Low-voltage during deceleration (Lvd)
- 13: Low-voltage during constant speed (Lvn)
- 14: Stop mid-low voltage (LvS)
- 15: Phase loss protection (OrP)
- 16: IGBT over-heat (oH1)
- 17: Capacitance over-heat (oH2) (for 40hp above)
- 18: tH1o (TH1 open: IGBT over-heat protection error)
- 19: tH2o (TH2 open: capacitance over-heat protection error)
- 21: Drive over-load (oL)
- 22: Electronics thermal relay 1 (EoL1)
- 23: Electronics thermal relay 2 (EoL2)
- 24: Motor PTC overheat (oH3) (PTC/PT100)
- 26: Over-torque 1 (ot1)
- 27: Over-torque 2 (ot2)
- 28: Low current (uC)
- 30: Memory write-in error (cF1)
- 31: Memory read-out error (cF2)
- 33: U-phase current detection error (cd1)
- 34: V-phase current detection error (cd2)
- 35: W-phase current detection error (cd3)
- 36: Clamp current detection error (Hd0)
- 37: Over-current detection error (Hd1)
- 38: Over-voltage detection error (Hd2)
- 39: occ IGBT short circuit detection error (Hd3)
- 40: Auto tuning error (AUE)
- 41: PID feedback loss (AFE)
- 48: Analog current input loss (ACE)
- 49: External fault input (EF)
- 50: Emergency stop (EF1)
- 51: External Base Block (bb)
- 52: Password error (Pcod)

- 53: Software code error
- 54: Communication error (CE1)
- 55: Communication error (CE2)
- 56: Communication error (CE3)
- 57: Communication error (CE4)
- 58: Communication Time-out (CE10)
- 60: Brake transistor error (bF)
- 61: Y-connection/ Δ -connection switch error (ydc)
- 62: Decel. Energy Backup Error (dEb)
- 63: Slip error (oSL)
- 64: Electromagnet switch error (ryF)
- 72: Channel 1 (STO1~SCM1) internal hardware error (STL1)
- 73: External safety gate S1
- 74: FIRE mode output
- 76: Safety Torque Off (STO)
- 77: Channel 2 (STO2~SCM2) internal hardware error (STL2)
- 78: Channel 1 and Channel 2 internal hardware error (STL3)
- 79: U PHASE SHORT (Uocc)
- 80: V PHASE SHORT (Vocc)
- 81: W PHASE SHORT (Wocc)
- 82: OPHL U phase output phase loss
- 83: OPHL Vphase output phase loss
- 84: OPHL Wphase output phase loss
- 90: Inner PLC function is forced to stop
- 99: TRAP CPU command error
- 101: CGdE CANopen software disconnect1
- 102: CHbE CANopen software disconnect2
- 103: CSyE CANopen synchronous error
- 104: CbFE CANopen hardware disconnect
- 105: CIdE CANopen index setting error
- 106: CAdE CANopen slave station number setting error
- 107: CFrE CANopen index setting exceed limit
- 111: InrCOM Internal communication overtime error
- \square When the fault occurs and force stopping, it will record in this parameter.
- At stop with low voltage Lv (LvS warn, no record). During operation with mid-low voltage Lv (LvA, Lvd, Lvn error, will record).
- Setting 62: when dEb function is enabled, the drive will execute dEb and record to the Pr.06-17 to Pr.06-22 simultaneously.

×	88-23	Fault Output Option 1

- ✓ 35-24 Fault Output Option 2
- ✓ 35 25 Fault Output Option 3

Fault Output Option 4

Factory Setting: 0

Settings 0 to 65535 sec (refer to bit table for fault code)

These parameters can be used with multi-function output (set to 35-38) for the specific requirement. When the fault occurs, the corresponding terminals will be activated (It needs to convert binary value to decimal value to fill in Pr.06-23 to Pr.06-26).

Fault Code	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
	current	Volt.	OL	SYS	FBK	EXI	CE
0: No fault							
1: Over-current during acceleration (ocA)							
2: Over-current during deceleration (ocd)							
3: Over-current during constant speed(ocn)							
4: Ground fault (GFF)							
5: IGBT short-circuit (occ)							
6: Over-current at stop (ocS)							
7: Over-voltage during acceleration (ovA)		\bullet					
8: Over-voltage during deceleration (ovd)		•					
9: Over-voltage during constant speed (ovn)		\bullet					
10: Over-voltage at stop (ovS)		\bullet					
11: Low-voltage during acceleration (LvA)		lacksquare					
12: Low-voltage during deceleration (Lvd)		lacksquare					
13: Low-voltage during constant speed (Lvn)		\bullet					
14: Stop mid-low voltage (LvS)		lacksquare					
15: Phase loss protection (OrP)		\bullet					
16: IGBT over-heat (oH1)			\bullet				
17: Capacitance over-heat (oH2)			\bullet				
18: tH1o (TH1 open)			\bullet				
19: tH2o (TH2 open)			\bullet				
21: Drive over-load (oL)			\bullet				
22: Electronics thermal relay 1 (EoL1)			\bullet				
23: Electronics thermal relay 2 (EoL2)			\bullet				
24: Motor PTC overheat (oH3) (PTC)			\bullet				
26: Over-torque 1 (ot1)			lacksquare				
27: Over-torque 2 (ot2)			\bullet				
28: Low current (uC)	\bullet						
30: Memory write-in error (cF1)							
31: Memory read-out error (cF2)							
33: U-phase current detection error (cd1)				•			
34: V-phase current detection error (cd2)							
35: W-phase current detection error (cd3)							
36: Clamp current detection error (Hd0)				•			
37: Over-current detection error (Hd1)							
38: Over-voltage detection error (Hd2)							
39: occ IGBT short circuit detection error (Hd3)							
40: Auto tuning error (AUE)							
41: PID feedback loss (AFE)					•		
48: Analog current input loss (ACE)					\bullet		

Fault Code		Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
		Volt.	OL	SYS	FBK	EXI	CE
49: External fault input (EF)							
50: Emergency stop (EF1)							
51: External Base Block (bb)							
52: Password error (Pcod)							
53: Software code error				•			
54: Communication error (CE1)							
55: Communication error (CE2)							•
56: Communication error (CE3)							
57: Communication error (CE4)							\bullet
58: Communication Time-out (CE10)							•
59: PU Time-out (CP10)							
60: Brake transistor error (bF)							
61: Y-connection/ Δ -connection switch error							
(ydc)						•	
62: Decel. Energy Backup Error (dEb)							
63: Slip error (oSL)							
64: Electromagnet switch error (ryF)							
72: Channel 1 (STO1~SCM1) internal							
hardware error (STL1)				•			
73: External safety gate S1				•			
74: FIRE mode output							
76: Safety Torque Off (STO)							
77: Channel 2 (STO2~SCM2) internal							
hardware error (STL2)							
78: Channel 1 and Channel 2 internal hardware							
error (STL3)							
79: U phase over current (Uocc)							
80: V phase over current (Vocc)							
81: W phase over current (Wocc)							
82: OPHL U phase output phase loss							
83: OPHL Vphase output phase loss							
84: OPHL Wphase output phase loss							
90: Inner PLC function is forced to stop				\bullet			
99: TRAP CPU command error				\bullet			
101: CGdE CANopen software disconnect1							\bullet
102: CHbE CANopen software disconnect2							\bullet
103: CSyE CANopen synchronous error							\bullet
104: CbFE CANopen hardware disconnect							●
105: CIdE CANopen index setting error							\bullet
106: CAdE CANopen slave station number							
setting error							
107: CFrE CANopen index setting exceed limit							\bullet
111: InrCOM Internal communication overtime							
error							•

Settings 0.0~6553.5Amp

When malfunction occurs, user can check the current output current. If it happens again, it will overwrite the previous record.

IGBT Temperature at Malfunction

Factory Setting: Read only

Settings -3276.7~3276.7°C

📖 When malfunction occurs, user can check the current IGBT temperature. If it happens again, it will overwrite the previous record.

86-3 Capacitance Temperature at Malfunction

Factory Setting: Read only

Settings -3276.7~3276.7°C

I When malfunction occurs, user can check the current capacitance temperature. If it happens again, it will overwrite the previous record.

Motor Speed in rpm at Malfunction

Factory Setting: Read only

Settings -32767~32767 rpm

When malfunction occurs, user can check the current motor speed in rpm. If it happens again, it will overwrite the previous record.

Status of Multi-function Input Terminal at Malfunction

Factory Setting: Read only

Settings 0000h~FFFFh

Status of Multi-function Output Terminal at Malfunction

Factory Setting: Read only

Settings 0000h~FFFFh

Dependence of the walfunction occurs, user can check the status of multi-function input/output terminals. If it happens again, it will overwrite the previous record.

85-42 **Drive Status at Malfunction**

Factory Setting: Read only

Settings 0000H~FFFFh

 \square When malfunction occurs, please check the drive status (communication address 2101H). If malfunction happens again, the previous record will be overwritten by this parameter.

<u>86 - 44</u> STO Alarm Latch

Factory Setting: 0

Settings 0: STO alarm Latch

1: STO alarm no Latch

- Pr.06-44=0 STO Alarm Latch: after the reason of STO Alarm is cleared, a Reset command is needed to clear STO Alarm.
- \square Pr.06-44=1 STO Alarm no Latch: after the reason of STO Alarm is cleared, the STO Alarm will be cleared automatically.
- 📖 All of STL1~STL3 error are "Alarm latch" mode (in STL1~STL3 mode, the Pr.06-44 function is no effective).

period, OPHL detection will not be conducted. After DC brake, motor drive starts to run, and conducts the OPHL protection as mentioned in status 1.

Status 3: Motor drive is in stop; Pr.06-48 \neq 0 ; Pr.07-02 \neq 0

When motor drive starts, it will perform Pr.06-48 and then Pr.07-02 (DC brake). DC brake current level in this status includes two parts, one is 20 times of Pr.06-47 setting value in Pr.06-48 setting time, and Pr.07-02 setting value in Pr.07-01 setting time. Total DC brake time is T=Pr.06-48+Pr.07-02.

In this period, if OPHL happens, motor drive starts to count Pr.06-48/2 time, motor drive will perform Pr.06-45 setting.

Status 3-1: Pr06-48 \neq 0, Pr07-02 \neq 0 (No OPHL detected before operation)

Status 3-2: Pr06-48 \neq 0, Pr07-02 \neq 0 (OPHL detected before operation)

Status 4: Motor drive is in stop; Pr.06-48 ≠ 0 ; Pr.07-02=0 When motor drive starts, it will perform Pr.06-48 as DC brake. The DC brake current level is 20 times of Pr.06-47 setting value. In this period, if OPHL happens, motor drive starts to count Pr.06-48/2 time; motor drive will perform Pr.06-45 setting. Status 4-1: $Pr06-48 \neq 0$, Pr07-02=0 (No OPHL detected before operation)

Status 4-2: $Pr06-48 \neq 0$, Pr07-02=0 (OPHL detected before operation)

Pr06-50 is time for input phase loss detection, pre-setting 0.20 sec represent check per every 0.20 sec.

Factory Setting: 30.0/60.0/75.0/90.0

Settings 230V series: 0.0~100.0VDC 460V series: 0.0~200.0VDC 575V series: 0.0~400.0VDC 690V series: 0.0~480.0VDC

When the DC BUS ripple is higher than Pr.06-52, and continue Pr.06-50 plus 30 seconds, drive will trip up OrP and act depending on the setting of Pr.06-53 to stop.

In the time period Pr.06-50 plus 30 seconds, if the DC BUS ripple is lower than Pr.06-52, the OrP protection counter will be restart.

Treatment for the detected Input Phase Loss (OrP)

Factory Setting: 0

Settings 0: warn, ramp to stop

1: warn, coast to stop

We can get DC BUS ripple voltage via Pr.06-50 ripple time, when the condition is satisfy, drive will active the protection of Input Phase Loss according to Pr.06-53 settings:

- ◆ DC BUS ripple frequency≤166Hz
- The amplitude is higher than Pr.06-52 settings [default 30V (220V type), 60V (440V type)], it will start to count time after 20 consecutive times.
- When continue the following conditions at the time,ORP will occur.

(I)% is rated current percentage

(I)%	Actual seconds		
50	432		
75	225		
120	60		

When any condition is not satisfied, the ORP protect function will be recalculated.

✓ 08 - 55 Derating Protection

Factory Setting: 0

Settings 0: constant rated current and limit carrier wave by load current and temperature

- 1: constant carrier frequency and limit load current by setting carrier wave
- 2: constant rated current(same as setting 0), but close current limit
- The Max. output frequency and its corresponded carrier frequency lower limit under each control mode:
 - VF, SVC: 599Hz, 6K
 - FOC sensorless (IM): 300Hz, 6K
 - FOC sensorless (PM): 500Hz, 10K

Setting 0:

When the rated current is constant, carrier frequency (Fc) outputted by PWM will auto decrease according to surrounding temperature, overload output current and time. If overload situation is

not frequent and only cares the carrier frequency operated with the rated current for a long time and carrier wave changes during short overload, it is recommended to set to 0.

Refer to the following diagram for the level of carrier frequency. Take VFD007CP43A in normal duty as example, surrounding temperature 50°C with independent installation and UL open-type. When the carrier frequency is set to 15 kHz, it corresponds to 72% rated output current. When it outputs higher than the value, it will auto decrease the carrier frequency. In addition, it will also decrease the carrier frequency is 15 kHz and the current is 120%*72%=86% for a minute, the carrier frequency will decrease to the factory setting.

Setting 1:

It is used for the fixed carrier frequency and prevents the carrier wave changes and motor noise caused by the surrounding temperature and frequent overload.

Refer to the following for the derating level of rated current. Take VFD007CP43A in normal duty as example, when the carrier frequency keeps in 15kHz and the rated current is decreased to 72%, it will have OL protection when the current is 120%*72%=86% for a minute. Therefore, it needs to operate by the curve to keep the carrier frequency.

Setting 2:

It sets the protection method and action to 0 and disables the current limit for the Ratio*160% of output current in the normal duty and Ratio*130% of output current in the light duty. The advantage is that it can provide higher output current when the setting is higher than the factory setting of carrier frequency. The disadvantage is that it decreases carrier wave easily when overload.

- It should be used with Pr.00-16 and Pr.00-17 for setting.
- Ambient temperature will also affect the derating, please refer to ambient temperature derating curve.

Ambient Temperature derating Curve for General Control Mode

Factory Setting: 5.000

Factory Setting: 7.000

Settings 0.000~10.000V

Make sure Pr. 06-57 > Pr.06-56.

Figure 1

When Pr.06-58=0.00Hz, PT100 function is disabled.

Example:

A PT100 is installed to the drive. If motor temperature reaches 135°C (275°F) or higher, the drive will decrease motor frequency to the setting of Pr.06-58. Motor will operate at this frequency (Pr.06-58) till the motor temperature decreases to 135°C (275°F) or lower. If motor temperature exceeds 150°C(302°F), the motor will decelerate to stop and outputs an 'OH3' warning. Set up process:

- Switch AFM2 (SW2) to 0~20mA on the I/O control terminal block. (Refer to Figure 1, PT100 wiring diagram)
- Wiring (Refer to Figure 1, PT100 wiring diagram): Connect external terminal AFM2 to (+) Connect external terminal ACM to (-) Connect external terminals AFM2 and AVI1 to short-circuit
- 3. Set Pr.03-00=11 or Pr.03-23=23 or Pr.03-33=45%(9mA)
- 4. Refer to RTD temperature and resistance comparison table Temperature=135°C, resistance=151.71Ω; Input current: 9mA, Voltage: approximately: 1.37VDC Temperature=150°C, resistance=157.33Ω; Input current: 9mA, Voltage: approximately: 1.42VDC
- Set Pr.06=56=1.37 and Pr.06-58=10Hz. When RTD temperature increases to 135°C or higher, the drive will decelerate to the selected frequency. When Pr.06-58=0, the drive will not run. Pr06-56=1.37; Pr06-58=10Hz.
- Set Pr.06-57=1.42 and Pr.06-29=1 (warning and decelerate to stop). When RTD temperature increases to 150°C or higher, the drive will decelerate to stop and outputs an 'OH3' warning. Pr06-57=1.42; Pr06-29=1.

Software Detection GFF Current Level

Factory Setting: 60.0

Settings 0.0~6553.5 %

Software Detection GFF Filter Time

Factory Setting: 0.10

Settings 0.00~655.35 sec

GFF and stop output immediately.

86-63	Fault Record 1 (day)
86-65	Fault Record 2 (day)
86-67	Fault Record 3 (day)
86-69	Fault Record 4 (day)

Settings 0~65535 days

Factory Setting: Read only

B S S Fault Record 1 (min)	
CS-SS Fault Record 2 (min)	
36 - 58 Fault Record 3 (min)	
CS-7C Fault Record 4 (min)	

Factory Setting: Read only

Settings 0~1439 min

When there is any malfunctions in motor drive operation, Pr.06-17~22 will record 6 malfunctions recently, and Pr.06-63~70 can record the operation time for 4 malfunctions in sequence. It can help to check if there is any wrong with the drive according to the recorded internal time. For example:

The first error: ocA occurs in 1000 minutes after motor drive start operation. The second error: ocd happens after another 1000 minutes. The 4th error: ocA happens after another 1000 minutes. Then, the 5th error is ocd, happening 1000 minutes following 4th error. Last, 6th error ocn happens 1000 minutes after 5th error.

	1 st fault	2 nd fault	3 rd fault	4 th fault	5 th fault	6 th fault
06-17	ocA	ocd	ocn	ocA	ocd	ocn
06-18	0	ocA	ocd	ocn	ocA	ocd
06-19	0	0	ocA	ocd	ocn	ocA
06-20	0	0	0	ocA	ocd	ocn
06-21	0	0	0	0	ocA	ocd
06-22	0	0	0	0	0	ocA
06.63	0	1	2	2	2	4
00-03	0	I	Ζ	۷.	5	4
06-64	1000	560	120	1120	680	240
06-65	0	0	1	2	2	3
06-66	0	1000	560	120	1120	680
06-67	0	0	0	1	2	2
06-68	0	0	1000	560	120	1120
06-69	0	0	0	0	1	2
06-70	0	0	0	1000	560	120

Then	Pr 06-17~Pr	06-22 and	Pr 06-63~P	r 06-70 will be [.]
THOM	11.00-17 11	.00-22 and	11.00-00 1	1.00-70 will bC.

From time record, it can be known that the last fault (Pr.06-17) happened after the drive run for 4days and 240 minutes.

Factory Setting: 0.0

116 - 12 Low Current Detection Time

Factory Setting: 0.00

Settings 0.00~360.00 sec

Factory Setting: 0

- Settings 0 : No function
 - 1 : warn and coast to stop
 - 2 : warn and ramp to stop by 2nd deceleration time
 - 3 : warn and operation continue
- The drive will operate as the setting of Pr.06-73 when output current is lower than the setting of Pr.06-71 and when low current continues for a period longer than the setting of Pr.06-72. This parameter can also be used with external multi-function output terminal 44 (MO44) for low current output.
- The low current detection function will not be executed when drive is at sleep or standby status.
- The low current setting level of Pr06-71 is based on drive's rated current, Pr00-01(Motor Drive Rated Current)* Pr06-71(Low Current Setting Level)% = low current detection level(A). The setting of drive's rated current related to Pr00-16(Load Selection) to change Pr00-01(Motor Drive Rated Current).

GE - GE dEb Motion Offset Setting

		Factory Setting:
Settings	230V series: 0.0~200.0VDC	20.0
	460V series: 0.0~200.0VDC	40.0
	575V series: 0.0~200.0VDC	50.0
	690V series: 0.0~200.0VDC	60.0

35 - 83 Fire Mode

Factory Setting: 0.00

Settings 0: Disable

- 1: Forward Operation
- 2: Reverse Operation

This parameter needs to work with multi-input function terminal #58 or #59 and multi-output function terminal #53 and #54.

Setting is 0: Fire mode is disabled.

Setting is 1: When there is a fire, motors will operate clock wisely (U, V, W).

Setting is 2: When there is a fire, motors will operate counter-clock wisely.

C Contracting Frequency when running Fire Mode

Factory Setting: 60.00

Settings 0.00 ~ 599.00 Hz

This parameter is to set up the drive's frequency when the fire mode is enabled.

Enable Bypass on Fire Mode

Factory Setting: 0

Settings 0: Disable Bypass

1: Enable Bypass

Settings 0.00~100.00%

Factory Setting: 0.00

Pr. 06-87 is the Fire mode PID set point when the Pr. 06-86 bit0=1.

Fire mode operation procedure is shown in the following flowchart. The operation mode will accord to the Pr. 06-86 Bit0 setting (Bit0: 0=Open Loop; 1=Close Loop (PID control)).

The Fire mode operating procedure:

Pr. 06-86 Bit0=0: When the Pr. 06-80=1 or 2, and the multi-functional input terminals MIx=58 has been turned ON, then drive will start the fire mode operation. The drive will speeds up to the setting frequency of Pr. 06-81, and the KPC-CC01 displays a "Fire" warning. If the multi-function output terminals MOx=53, this terminal will be closed. If the Pr. 06-82=1 enabled the Bypass function and the condition is established, the MOx=54 Bypass fire mode will indicate action and switch the power source of the motor to the mains power, and the drive stops.

Pr. 06-86 Bit0=1: When the Pr. 06-80=1 or 2, and the multi-functional input terminals MIx=58 has been turned ON, then drive will start the fire mode operation. The drive will run PID control with Pr. 06-87 as PID set point, and the KPC-CC01 displays a "Fire" warning. If the multi-function output terminals MOx=53, this terminal will be closed. If the Pr. 06-82=1 enabled the Bypass function and the condition is established, the MOx=54 Bypass fire mode will indicate action and switch the power source of the motor to the mains power, and the drive stops.

If the PID feedback signal occurs abnormally, the drive switches to the open loop and runs at the set frequency of Pr. 06-81.

Bypass function operating time chart

Conditions required for enable the Bypass function (Pr. 06-82 is set to 1):

- (1) When operating at fire mode, there is error (as shown in the table below) and the fire alarm rings according to the time setting of Pr.06-83, then the bypass function will be enabled. MFO bypass indication will be ON.
- (2) When operating at fire mode, there is an error on auto-reset and the number of time to auto-reset remains zero or the fire alarm rings according to the time setting of Pr.06-83, then the bypass function will be enabled. MFO bypass indication will be ON. If the auto reset is successful before the bypass function is enabled, then the bypass delay counter will return to zero to wait for next trigger.

Table 1: Error detection under Normal mode, Fire mode and Bypass function at Fire mode. (Vmeans detectable)

Code	Error name	Normal	Fire Mode	Enable bypass
		mode	The mode	function
1	Over current during Acceleration (ocA)	V(RS)	V(able to auto-reset)	V
2	Over current during deceleration (ocd)	V(RS)	V(able to auto-reset)	V
Codo	Error nome	Normal	Fire Mede	Enable bypass
------	--	--------	-----------------------	----------------
Code	Enormanie	mode	Fire Mode	function
3	Over current during normal speed (ocn)	V(RS)	V(able to auto-reset)	V
4	Ground Fault (GFF)	V	V(able to auto-reset)	V
5	IGBT short circuit (occ)	V(RS)	V(able to auto-reset)	V
6	Over current during Stop (ocS)	V(RS)	V(able to auto-reset)	V
7	Over voltage during Acceleration (ovA)	V(RS)	V(able to auto-reset)	V
8	Over voltage during deceleration (ovd)	V(RS)	V(able to auto-reset)	V
9	Over voltage during normal speed (ovn)	V(RS)	V(able to auto-reset)	V
10	Over voltage during Stop (ovS)	V(RS)	V(able to auto-reset)	V
11	Low voltage during Acceleration (LvA)	V	Not-detectable	Not-detectable
12	Low voltage during deceleration (Lvd)	V	Not-detectable	Not-detectable
13	Low voltage during normal speed (Lvn)	V	Not-detectable	Not-detectable
14	Low voltage during Stop (LvS)	V	Not-detectable	Not-detectable
15	Input phase loss (OrP)	V	V(able to auto-reset)	V
16	Over heat 1 (oH1)	V	V(able to auto-reset)	V
17	Over heat 2 (oH2)	V	V(able to auto-reset)	V
18	Thermister 1 open (tH1o)	V	V(able to auto-reset)	V
19	Thermister 2 open (tH2o)	V	V(able to auto-reset)	V
21	Over Load (oL) (150% 1Min, Inverter)	V	Not-detectable	Not-detectable
22	Motor 1 over load (EoL1)	V	Not-detectable	Not-detectable
23	Motor 2 over load (EoL2)	V	Not-detectable	Not-detectable
24	Over heat 3 (oH3)	V	V(able to auto-reset)	V
26	Over torque 1 (ot1)	V	Not-detectable	Not-detectable
27	Over torque 2 (ot2)	V	Not-detectable	Not-detectable
28	Low current (uC)	V	Not-detectable	Not-detectable
30	EEPROM write error (cF1)	V	Not-detectable	Not-detectable
31	EEPROM read error (cF2)	V	V	Not-detectable
33	U phase current sensor detection error (cd1)	V	V	Not-detectable
34	V phase current sensor detection error (cd2)	V	V	Not-detectable
35	W phase current sensor detection error (cd3)	V	V	Not-detectable
36	Hardware Logic error 0 (Hd0) - cc	V	V	Not-detectable
37	Hardware Logic error 1 (Hd1) - oc	V	V	Not-detectable
38	Hardware Logic error 2 (Hd2) - ov	V	V	Not-detectable
39	Hardware Logic error 3 (Hd3) – occ	V	V	Not-detectable
40	Motor auto tuning error (AUE)	V	Not-detectable	Not-detectable

Codo	Error namo	Normal	Eiro Modo	Enable bypass	
Code	Endiname	mode	Fire Mode	function	
41	ACI feedback loss (AFE)	V	Not-detectable	Not-detectable	
48	ACI Loss (ACE)	V	Not-detectable	Not-detectable	
49	External fault (EF)	V	Not-detectable	Not-detectable	
50	Emergency stop (EF1)	V	Not-detectable	Not-detectable	
51	base block (bb)	V	Not-detectable	Not-detectable	
52	PcodE (Password)	V	Not-detectable	Not-detectable	
53	Software code error (ccod)	V	V	Not-detectable	
54	Communication error 1 (CE1)	V	Not-detectable	Not-detectable	
55	Communication error 2 (CE2)	V	Not-detectable	Not-detectable	
56	Communication error 3 (CE3)	V	Not-detectable	Not-detectable	
57	Communication error 4 (CE4)	V	Not-detectable	Not-detectable	
58	Communication Time Out (CE10)	V	Not-detectable	Not-detectable	
59	Communication time out (CP10)	V	Not-detectable	Not-detectable	
60	Braking Transistor Fault (bF)	V	Not-detectable	Not-detectable	
61	Y-Delta connected Error (ydc)	V	Not-detectable	Not-detectable	
62	Decel. Energy Backup Error (dEb)	V	Not-detectable	Not-detectable	
63	Over Slip Error (oSL)	V	Not-detectable	Not-detectable	
64	Electromagnet switch error (ryF)	V	Not-detectable	Not-detectable	
70	Channel 1 (STO1~SCM1) internal	V	V	Not dotoctable	
12	hardware error (STL1)	v	v	Not-detectable	
73	External safety gate S1	V	V	Not-detectable	
74	Fire Mode output (Fire)	V	V(keeps on	V(keeps on	
		, i i i i i i i i i i i i i i i i i i i	operating)	operating)	
76	Safety Torque Off (STO)	V	V	Not-detectable	
77	Channel 2 (STO2~SCM2) internal	V	V	Not-detectable	
	hardware error (STL2)		v		
78	Channel 1 and Channel 2 internal	V	V	Not-detectable	
	hardware error (STL3)				
79	U phase over current (Uocc)	V	Not-detectable	Not-detectable	
80	V phase over current (Vocc)	V	Not-detectable	Not-detectable	
81	W phase over current (Wocc)	V	Not-detectable	Not-detectable	
82	OPHL U phase output phase loss	V	V(able to auto-reset)	V	
83	OPHL V phase output phase loss	V	V(able to auto-reset)	V	
84	OPHL W phase output phase loss	V	V(able to auto-reset)	V	
90	Inner PLC function is forced to stop	V	Not-detectable	Not-detectable	
	(FStp)	· ·			
99	CPU Trap error (TRAP)	V	V	Not-detectable	
101	CGdE CANopen software disconnect1	V	Not-detectable	Not-detectable	
102	ChbE CANopen software disconnect2	V	Not-detectable	Not-detectable	

Codo	Error nome	Normal	Eiro Modo	Enable bypass	
Code		mode	File Mode	function	
103	CSYE CANopen synchronous error	V	Not-detectable	Not-detectable	
104	CbFE CANopen hardware disconnect	V	Not-detectable	Not-detectable	
105	CidE CANopen index setting error	V	Not-detectable	Not-detectable	
100	CadE CANopen slave station number	V	Not dotostable	Not-detectable	
106	setting error	v	Not-detectable		
107	CfrE CANopen index setting exceed	V	Not dotostable	Not-detectable	
107	limit		NOL-GELECIADIE		
111	InrCOM Internal communication	Ň	Not detectable	Not detectable	
111	overtime error	v	inol-delectable	Not-defectable	

The Fire mode reset procedure:

When the terminal MIx=58 has become $ON \rightarrow OFF$, the drive starts to run "fire mode reset procedure", and will decide "Manual reset" or "Auto reset" fire mode according to the P06-86 bit1 selection.

Wiring diagram:

1. When the AC power ON, RB1/ RC1 contacts=ON, and RA1/ RC1=OFF.

2. When operating at the fire mode with no bypass indication function, RB1/RC1=ON, and the motor is driven by the drive.

- In fire mode, the driver operating direction refers to Pr. 06-80=1 (forward) or Pr. 06-80=2 (reverse). Other operating direction commands are not valid. The P00-23 Motor Operating Direction Control function is invalid.
- All KPC-CC01 keypad commands are ignored in fire mode (includes Run, Stop, JOG, direction commands).
- All RS485 communication commands are ignored in fire mode (includes Run, Stop, JOG, direction commands).
- In fire mode, the function "B.B" and "EF" cannot work (including external terminal B.B, communication B.B, external terminal EF, communication EF, external terminal EF1). If the B.B is in action, it will be automatically invalidated (including external terminals B.B, communication B.B) and the driver will execute speed search.
- In fire mode, if the EF and EF1 are in action, they will be automatically invalidated (including external terminals EF & EF1, communication EF).
- In fire mode, the JOG command is invalid (JOG command Source: Keypad, external terminals, communications). If the JOG command is in action, it will be automatically invalidated.
- In fire mode, the Acceleration / Deceleration Speed Inhibit function is invalid. If this function is in action, it will be automatically invalidated.
- In fire mode, if the Pr. 06-86 Bit0=0 (Open Loop), the driver does not perform 08 group PID function. If 08 group PID functions are in action, it will be automatically invalidated.
- In fire mode, the Hand-Off-Auto function is invalid (including multi-function output terminals).
- No Circulative Control function is performed in fire mode, and all circulating control function parameters will be cleared. If the "circulative control" is in action, it will be automatically invalidated.
- No sleep function is performed in fire mode.
- The DC Brake function is not performed in fire mode. The DC brake in action will be automatically invalidated.
- In fire mode, the Over Current Stall Prevention function is invalid. The over-current stall prevention in action will be automatically invalidated.

- Do OL detection function detection in fire mode.
- No OL1/OL2 detection function in fire mode.
- Abnormal communication (CE10, CE01, CE02, CE03, CE04) detection is invalid in fire mode.
- The cd1,cd2,cd3 and Hd0,Hd1,Hd2,Hd3 are boot checking and cannot be reset. The above errors cannot be reset in fire mode as well. The drive is not functioning in fire mode.
- In fire mode, the driver will not trip up by LV error and will keep running or completely no electricity. If the LV error is happened before fire mode warning, reset the LV error to operate the driver.
- After the MOx=54 Bypass fire mode indication is activated, the only way to turn off MOx=54 is reset the fire warning and re-power ON again.
- Description is invalid in fire mode.
- In fire mode, skip frequency function is invalid.
- The Pr. 06-81 Operating Frequency cannot be greater than the Pr. 01-00 Maximum output frequency under Fire Mode. If Pr. 06-81 > Pr. 01-00, then the output frequency will be automatically limited to Pr. 01-00.

07 Special Parameters

✓ This parameter can be set during operation.

 Software Brake Level
 Factory Setting: 380.0/740.0/895.0/1057.0
 Settings 230V series: 350.0~450.0VDC 460V series: 700.0~900.0VDC 575V series: 850.0~1116.0VDC 690V series: 939.0~1318.0VDC
 This parameter sets the DC-bus voltage at which the brake chopper is activated. Users can choose the suitable brake resistor to have the best deceleration. Refer to Chapter 7 Accessories

for the information of the brake resistor.

It is only valid for the models below 22kW of 230 series and 30kW of 460 series.

DC Brake Current Level

Factory Setting: 0

Settings 0~100%

This parameter sets the level of DC Brake Current output to the motor during start-up and stopping. When setting DC Brake Current, the Rated Current is regarded as 100%. It is recommended to start with a low DC Brake Current Level and then increase until proper holding torque has been attained.

✓ 🕃 🤁 🖉 DC Brake Time at RUN

Factory Setting: 0.0

Settings 0.0~60.0 sec

The motor may be in the rotation status due to external force or itself inertia. If the drive is used with the motor at this moment, it may cause motor damage or drive protection due to over current. This parameter can be used to output DC current before motor operation to stop the motor and get a stable start. This parameter determines the duration of the DC Brake current after a RUN command. When it is set to 0.0, it is invalid.

DC Brake Time at Stop

Factory Setting: 0.0

Settings 0.0~60.0 sec

- The motor may be in the rotation status after drive stop outputting due to external force or itself inertia and can't stop accurately. This parameter can output DC current to force the motor drive stop after drive stops to make sure that the motor is stop.
- This parameter determines the duration of the DC Brake current during stopping. To DC brake at stop, this function will be valid when Pr.00-22 is set to 0 or 2. When setting to 0.0, it is invalid.
- Related parameters: Pr.00-22 Stop Method, Pr.07-04 Start-point for DC Brake.

✓ 🚼 - 읍복 DC Brake Frequency at STOP

Factory Setting: 0.00

Settings 0.00~599.00Hz

This parameter determines the frequency when DC Brake will begin during deceleration. When this setting is less than start frequency (Pr.01-09), the start-point for DC brake will start from the min. frequency.

- DC Brake at Start-up is used for loads that may move before the AC drive starts, such as fans and pumps. Under such circumstances, DC Brake can be used to hold the load in position before setting it in motion.
- DC Brake at stop is used to shorten the stopping time and also to hold a stopped load in position, such as crane or cutting machine.

✓ **37-35** Voltage Increasing Gain

Factory Setting: 100

Settings 1~200%

When the user is using speed tracking, adjust Pr07-05 to slow down the increasing of voltage if there are errors such as oL or oc.

Restart after Momentary Power Loss

Factory Setting: 0

Settings 0: Stop operation

- 1: Speed search for last frequency command
- 2: Speed search for the minimum output frequency
- This parameter determines the operation mode when the AC motor drive restarts from a momentary power loss.
- The power connected to the drive may power off momentarily due to many reasons. This function allows the drive to keep outputting after power is on again after power off and won't cause drive stops.
- Setting 1: Operation continues after momentary power loss, speed search starts with the Master Frequency reference value after drive output frequency and motor rotator speed is synchronous. The motor has the characteristics of big inertia and small obstruction. For example, in the equipment with big inertia wheel, it doesn't need to wait to execute operation command until wheel is complete stop after re-start to save time.

- Setting 2: Operation continues after momentary power loss, speed search starts with the minimum output frequency after drive output frequency and motor rotator speed is synchronous. The motor has the characteristics of small inertia and bigger obstruction.
- Description in the second seco

Maximum Power Loss Duration

Factory Setting: 2.0

Settings 0.0~20.0 sec

- If the duration of a power loss is less than this parameter setting, the AC motor drive will resume operation. If it exceeds the Maximum Allowable Power Loss Time, the AC motor drive output is then turned off (coast stop).
- □ The selected operation after power loss in Pr.07-06 is only executed when the maximum allowable power loss time is ≤ 5 seconds and the AC motor drive displays "LU".
- □ However, if the AC motor drive is powered off due to overload, even if the maximum allowable power loss time is ≤ 5 seconds, the operation mode as set in Pr.07-06 is not executed. In that case it starts up normally.

Base block Time

Factory Setting: 0.5

Settings 0.0~5.0 sec. (Depending on the motor power)

Pr.07-08 Factory Setting:

KW	007	015	022	037	0	40	05	5	075	11	0	150
HP	1	2	3	5	5	5.5	7.	5	10	1	5	20
Pr07-08 (sec)	0.3	0.4	0.5	0.6	0	.7	0.	7	0.8	0.	9	1
		1	-								-	
KW	185	220	300	37	0	45	50	5	50	750)	900
HP	25	30	40	5	0	6	0	7	75	100)	125
Pr07-08 (sec)	1.1	1.2	1.3	1.	4	1.	.5	1	.6	1.7		1.8

When momentary power loss is detected, the AC drive will block its output and then wait for a specified period of time (determined by Pr.07-08, called Base-Block Time) before resuming operation. This parameter should be set at a value to ensure that any residual regeneration voltage from the motor on the output has disappeared before the drive is activated again.

B.B. Search with minimum output frequency upward timing chart

Current Limit for Speed Search

Factory Setting: 100

Settings 20~200%

- Following a momentary power loss, the AC motor drive will start its speed search operation only if the output current is greater than the value set by Pr.07-09.
- The maximum speed search level will affect the synchronous time. It will get the synchronization faster when this parameter is set to larger value. But too large value may activate overload protection.

✓ ☐ ☐ - ↓ ☐ Treatment after Fault

Factory Setting: 0

Settings 0: Stop operation

1: Speed search starts with current speed

2: Speed search starts with minimum output frequency

Fault includes: bb, oc, ov, and occ. To restart after oc, ov, occ, Pr.07-11 cannot be set to 0.

G - + + Auto Restart Time after Fault

Factory Setting: 0

Settings 0~10

- After fault (oc, ov, and occ) occurs, the AC motor drive can be reset/restarted automatically up to 10 times.
- Setting this parameter to 0 will disable the reset/restart operation after any fault has occurred. When enabled, the AC motor drive will restart with Pr07-10 setting after fault auto reset.
- If the time of reset/restart exceeds Pr.07-11 setting, the fault will not be restart /reset until user reset manually and run the motor drive again.

Government Control Contron Control Control Control Control Control Control Control C

Settings 0: Disable

- 1: Speed search from maximum output frequency
- 2: Speed search from start-up motor frequency
- 3: Speed search from minimum output frequency
- This parameter is used for starting and stopping a motor with a high inertia. A motor with high inertia will take 2-5 minutes or longer to stop completely. By setting this parameter, the user does not need to wait for the motor to come to a complete stop before restarting the AC motor drive. The output current is set by the Pr.07-09.

Factory Setting: 0

Factory Setting: 0

Settings 0: Disable

- 1: dEb with auto accel./decal., the output frequency will not return after power reply.
- 2: dEb with auto accel./decal., the output frequency will return after power reply
- This function is the AC motor drive decelerates to stop after momentary power loss. When the momentary power loss occurs, this function can be used for the motor to decelerate to zero speed with deceleration stop method. When the power is on again, motor will run again after DEB return time. (has applied on high-speed spindle)
- Lv return level: default value differs by the motor drive's power model

Frame A, B, C, D = P06-00 + 60V/30V (230V models)

Frame E and above = P06-00 + 80V/40V (230V models)

- Lv level : default =Pr06-00
- During the dEb, the drive can also be protected by ryF, ov, oc, occ, EF...etc. and those error codes will be recorded.
- During the dEb deceleration time, the STOP (RESET) command will be ineffective. If the motor drive needs to coast to stop, use another function such as EF.
- During the dEb time, the "BB" function is ineffective until dEb is disabling.

- Even the Lv warning does not appear during dEb time, but the MO=10 "Low voltage warning" will be activated if the DCBUS voltage is lower than the Lv level.
- dEb actions are illustrated as below

When the DCBUS voltage drops to a level, which is smaller than the dEb activation level, the dEb function will be activated (the soft start relay is closed) and the motor drive will begin the auto-deceleration.

- Situation 1: Insufficient power supply due to momentary power-loss/unstable power (due to low voltage)/sudden heavy-load
 - 1. Pr07-13=1 "dEb with auto accel./decel., the output frequency will not return after power reply" and power restore.
 - 2. When the power restores and DCBUS voltage is higher than the "dEb return level", the drive will automatically switch from coast stop to ramp stop until 0Hz and stop. The keypad will display "dEb" warning until manually reset and this can avoid that users do not know the reason for stopping.

- Situation 2: Insufficient power supply due to momentary power-loss/unstable power (due to low voltage)/sudden heavy-load
 - 1. Pr07-13=2 "dEb with auto accel./decel., the output frequency will return after power reply" and power restore
 - During the dEb deceleration time (include 0hz run), if the power restore and DCBUS voltage is higher than "dEb return level", the drive will maintain the current frequency for 3 seconds and restart to accelerated, the dEb warning show on the keypad will then cleared automatically.

- Situation 3: Power supply unexpected shut down/power loss
 - 1. Pr07-13=1" dEb with auto accel./ ecal., the output frequency will not return after power restore" and power will not restore.
 - 2. The keypad will display "dEb" warning and decelerated to 0Hz and stop. When the DCBUS voltage has smaller than Lv level, the drive internal soft-start relay turn off and until drive is completely out of power.

- Situation 4:
 - 1. Pr07-13=2 "dEb with auto accel./ ecal., the output frequency will return after power restore" and power will not restore.
 - Same as the situation 3, the drive will decelerate to 0Hz. The DCBUS voltage will continue to reduce until the voltage is less than Lv level and drive internal soft-start relay turn-off. The keypad will display "dEb" warning until drive is completely out of power.
- Situation 5:
 - 1. Pr07-13=2 "dEb with auto accel./ ecal., the output frequency will return after power restore" and Power will restore after DCBUS voltage has smaller than Lv level.
 - 2. The drive decelerates to 0Hz and DCBUS voltage continue to reduce until the voltage is less than Lv level, drive internal soft-start relay turn-off. When the power restore and DCBUS voltage has higher than LV return level, the soft-start relay turn-on. When the DCBUS voltage has higher than dEb return level, waiting for DCBUS stability, the drive will maintain the current frequency for 3 seconds and restart to do linear accelerate, the dEb warning show on the keypad will cleared up automatically.

- 3: Fan turns ON when preliminary IGBT temperature (around 60°C) is attained.
- 4: Fan always OFF
- Description: This parameter is used for the fan control.
- Setting 0: Fan will be ON as the drive's power is turned ON.
- Setting 1: 1 minute after AC motor drive stops, fan will be OFF
- Setting 2: AC motor drive runs and fan will be ON. AC motor drive stops and fan will be OFF.
- Setting 3: Fan run according to IGBT and capacitance temperature. Fan will be ON when IGBT temperature is higher than 60°C. Fan will be OFF, when capacitance temperature is lower than 40°C.
- Setting 4: Fan is always OFF

Factory Setting: 0

Settings 0: Coast to stop

Emergency Stop (EF) & Force Stop

- 1: Stop by 1st deceleration time
- 2: Stop by 2nd deceleration time
- 3: Stop by 3rd deceleration time
- 4: Stop by 4th deceleration time
- 5: System Deceleration (According to original deceleration time)
- 6: Automatic Deceleration (Pr01-46)
- When the multi-function input terminal is set to 10(EF) or 18(Emergency stop) and is activated, the drive will stop according to the setting in Pr.07-20.

Factory Setting: 0

Settings 0: Disable 1: Enable

- When Pr.07-21 is set to 1, the acceleration and deceleration will operate with full voltage. During constant speed operation, it will auto calculate the best voltage value by the load power for the load. This function is not suitable for the ever-changing load or near full-load during operation.
- When the output frequency is constant, i.e. constant operation, the output voltage will auto decrease by the load reduction. Therefore, the drive will operate with min. power, multiplication of voltage and current.
- UF and SVC mode:

Steady-state conditions: When the output is light load, the drive will turn into the energy-saving mode in 5 seconds.

Reply condition: When the drive is continuously loaded or is in a non-steady state.

Energy-saving Gain

Factory Setting: 100

Settings 10~1000%

- When Pr. 07-21 is set to 1, this parameter can be used to adjust the gain of energy-saving. The factory setting is 100%. If the result is not good, it can adjust by decreasing the setting. If the motor oscillates, it should increase the setting value.
- In some applications, such as: high-speed spindle. Pay more attention to the temperature of the motor, it is hoped that the motor current can be reduced to a lower motor current level when the motor in the non-working state. Turn down this parameter can achieve the requirement.

✓ **// // // // // // // // //** Auto Voltage Regulation(AVR) Function

Factory Setting: 0

Settings 0: Enable AVR

- 1: Disable AVR
- 2: Disable AVR during deceleration
- The rated voltage of the motor is usually 220V/200VAC 60Hz/50Hz and the input voltage of the AC motor drive may vary between 180V to 264 VAC 50Hz/60Hz. Therefore, when the AC motor drive is used without AVR function, the output voltage will be the same as the input voltage. When the motor runs at voltages exceeding the rated voltage with 12% - 20%, its lifetime will be shorter and it can be damaged due to higher temperature, failing insulation and unstable torque output.
- AVR function automatically regulates the AC motor drive output voltage to the motor rated voltage. For instance, if V/F curve is set at 200 VAC/50Hz and the input voltage is at 200V to 264VAC, then the motor output voltage will automatically be reduced to a maximum of 200VAC/50Hz. If the input voltage is at 180V to 200VAC, output voltage to motor and input power will be in direct proportion.
- Setting 0: when AVR function is enabled, the drive will calculate the output voltage by actual

DC-bus voltage. The output voltage won't be changed by DC bus voltage.

- Setting 1: when AVR function is disabled, the drive will calculate the output voltage by DC-bus voltage. The output voltage will be changed by DC bus voltage. It may cause insufficient/over current.
- Setting 2: the drive will disable the AVR during deceleration, such as operated from high speed to low speed.
- When the motor ramps to stop, the deceleration time is longer. When setting this parameter to 2 with auto acceleration/deceleration, the deceleration will be quicker.

✓ ☐ 7 - 2 4 Filter Time of Torque Command (V/F and SVC control mode)

Factory Setting: 0.500

Settings 0.001~10.000 sec

When the setting is too long, the control will be stable but the control response will be delay. When the setting is too short, the response will be quickly but the control may be unstable. User can adjust the setting by the control and response situation.

Filter Time of Slip Compensation (V/F and SVC control mode)

Factory Setting: 0.100

Settings 0.001~10.000 sec

- It can set Pr.07-24 and 07-25 to change the response time of compensation.
- If Pr.07-24 and 07-25 are set to 10 seconds, the response time of compensation is the slowest. But the system may be unstable when the setting is too short.

✓ ☐ 7 - 2 5 Torque Compensation Gain (V/F and SVC control mode)

Factory Setting: 0

Settings Induction Motor 0~10 (Pr.05-33=0) PMSM: 0~5000 (Pr.05-33=1 or 2)

- When the motor load is large, a part of drive output voltage is absorbed by the resistor of stator winding and causes insufficient voltage at motor induction and result in over output current and insufficient output torque. It can auto adjust output voltage by the load and keep the air gap magnetic fields stable to get the optimal operation.
- In the V/F control, the voltage will be decreased in direct proportion when the frequency is decreased. It'll cause decrease torque at low speed due to small AC resistor and the same DC resistor. Therefore, Auto torque compensation function will increase the output voltage in the low frequency to get higher start torque.
- When Pr.07-26 is set too large, it may cause motor overflux and result in too large output current, motor overheat or triggers protection function.

Factory Setting: 0.00 (1 in SVC mode)

Settings 0.00~10.00

The induction motor needs the constant slip to produce magnetic torque. It can be ignored in the

higher motor speed, such as rated speed or 2-3% slip.

- In the operation with variable frequency, the slip and the synchronous frequency will be in reverse proportion to produce the same magnetic torque. That is the slip will be larger with the reduction of synchronous frequency. The motor may stop when the synchronous frequency is decreased to a specific value. Therefore, the slip serious affects the accuracy of motor speed at low speed.
- In another situation, when the drive uses with induction motor, the slip will be increased by the increasing load. It also affects the accuracy of motor speed.
- This parameter can be used to set compensation frequency and reduce the slip to close the synchronous speed when the motor runs in the rated current to raise the drive accuracy. When the drive output current is larger than Pr.05-05 No-load Current of Induction Motor 1 (A), the drive will compensate the frequency by this parameter.
- When the control method (Pr.00-11) is changed from V/F mode to vector mode, this parameter will auto be set to 1.00. Otherwise, it will be set to 0.00. Please do the compensation of slip after overload and acceleration. The compensation value should be increased from small to large gradually. That is to add the output frequency with motor rated slip X Pr.07-27 Slip Compensation Gain when the motor is rated load. If the actual speed ratio is slower than expectation, please increase the setting. Otherwise, decrease the setting.

The motor will have current wave motion in some specific area. It can improve this situation by setting this parameter. (When it is high frequency, it can be set to 0. When the current wave motion happens in the low frequency, please increase Pr.07-32.)

✓ 33 Auto restart internal of Fault

Factory Setting: 60.0

Settings 0.0~6000.0 sec

When a reset/restart after fault occurs, the drive will regards Pr.07-33 as a time boundary and beging counting the numbers of faults occur within this time period. Within the period, if numbers of faults occurred did not exceed the setting in Pr.07-11, the counting will be cleared and starts from 0 when next fault occurs.

08 High-function PID Parameters

✓ This parameter can be set during operation.

✓ 38 - 38 Input Terminal for PID Feedback

Settings 0: No function

Factory Setting: 0

- 1: Negative PID feedback: input from external terminal AVI1 (Pr.03-00~03-02)
- 4: Positive PID feedback: input from external terminal AVI1 (Pr.03-00~03-02)
- Negative feedback means: +target value feedback. It is used for the detection, value will be increased by increasing the output frequency.
- Positive feedback means: -target value + feedback. It is used for the detection, value will be decreased by increasing the output frequency.
- When Pr.08-00≠7 neither ≠8, input value is disabled. The value of the setting remains the same after the drive is off.

Common applications for PID control

- 1. Flow control: A flow sensor is used to feedback the flow data and performs accurate flow control.
- 2. Pressure control: A pressure sensor is used to feedback the pressure data and performs precise pressure control.
- 3. Air volume control: An air volume sensor is used to feedback the air volume data to have excellent air volume regulation.
- 4. Temperature control: A thermocouple or thermistor is used to feedback temperature data for comfortable temperature control.
- 5. Speed control: A speed sensor or encoder is used to feedback motor shaft speed or input another machines speed as a target value for closed loop speed control of master-slave operation. Pr.10.00 sets the PID set point source (target value).

PID control loop:

 K_p : Proportional gain(P) T_i : Integral time(I) T_d : Derivative control(D) S: Operator

Concept of PID control

1. Proportional gain(P):

The output is proportional to input. With only proportional gain control, there will always be a steady-state error.

2. Integral time(I):

The controller output is proportional to the integral of the controller input. To eliminate the steady-state error, an "integral part" needs to be added to the controller. The integral time decides the relation between integral part and error. The integral part will be increased by

time even if the error is small. It gradually increases the controller output to eliminate the error until it is 0. In this way a system can be stable without steady-state error by proportional gain control and integral time control.

3. Differential control(D):

The controller output is proportional to the differential of the controller input. During elimination of the error, oscillation or instability may occur. The differential control can be used to suppress these effects by acting before the error. That is, when the error is near 0, the differential control should be 0. Proportional gain (P) + differential control (D) can be used to improve the system state during PID adjustment.

When PID control is used in a constant pressure pump feedback application:

Set the application's constant pressure value (bar) to be the set point of PID control. The pressure sensor will send the actual value as PID feedback value. After comparing the PID set point and PID feedback, there will be an error. Thus, the PID controller needs to calculate the output by using proportional gain (P), integral time (I) and differential time (D) to control the pump. It controls the drive to have different pump speed and achieves constant pressure control by using a 4-20mA signal corresponding to 0-10 bar as feedback to the drive.

- Pr.00-04 is set to 10 (Display PID analog feedback signal value (b) (%))
- Pr.01-12 Acceleration Time will be set as required
- Pr.01-13 Deceleration Time will be set as required
- Pr.00-21=0 to operate from the digital keypad
- Pr.00-20=0, the set point is controlled by the digital keypad
- Pr.08-00=1 (Negative PID feedback from analog input)
- ACI analog input Pr. 03-01 set to 5, PID feedback signal.
- Pr.08-01-08-03 will be set as required
 If there is no vibration in the system, increase Pr.08-01(Proportional Gain (P))
 If there is no vibration in the system, reduce Pr.08-02(Integral Time (I))
 If there is no vibration in the system, increase Pr.08-03(Differential Time (D))
- Refer to Pr.08-00~08-21 for PID parameters settings.

Factory Setting: 1.0

Settings 0.0~100.0%

- When the setting is 1.0, it means Kp gain is 100%; setting is 0.5, means Kp gain is 50%.
- It is used to eliminate the system error. It is usually used to decrease the error and get the faster response speed. But if the value is set too high, it may cause the system oscillation and instability.
- If the other two gains (I and D) are set to zero, proportional control is the only one effective.
- **Integral Time (I)**

Factory Setting: 1.00

Settings 0.00~100.00 sec

- The integral controller is used to eliminate the error during stable system. The integral control doesn't stop working until error is 0. The integral is acted by the integral time. The smaller integral time is set, the stronger integral action will be. It is helpful to reduce overshoot and oscillation to make a stable system. At this moment, the decreasing error will be slow. The integral control is often used with other two controls to become PI controller or PID controller.
- This parameter is used to set the integral time of I controller. When the integral time is long, it will have small gain of I controller, the slower response and bad external control. When the integral time is short, it will have large gain of I controller, the faster response and rapid external control.
- When the integral time is too small, it may cause system oscillation.
- If the integral time is set as 0.00, Pr.08-02 will be disabled.

Derivative Control (D)

Factory Setting: 0.00

Settings 0.00~1.00 sec

- The differential controller is used to show the change of system error and it is helpful to preview the change of error. So the differential controller can be used to eliminate the error to improve system state. With the suitable differential time, it can reduce overshoot and shorten adjustment time. However, the differential operation will increase the noise interference. Please note that too large differential will cause big noise interference. Besides, the differential shows the change and the output of the differential will be 0 when there is no change. Therefore, the differential control can't be used independently. It needs to be used with other two controllers to make a PD controller or PID controller.
- This parameter can be used to set the gain of D controller to decide the response of error change. The suitable differential time can reduce the overshoot of P and I controller to decrease the oscillation and have a stable system. But too long differential time may cause system oscillation.
- The differential controller acts for the change of error and can't reduce the interference. It is not recommended to use this function in the serious interference.

Setting value of Pr.08-10 determines if sleep reference and wake-up reference is enable or disable. When Pr.08-10 = 0, it means disable. When 08-10 ≠ 0, it means enable.

Settings -100.0~100.0%

The PID compensation value=Max. PID target value×Pr08-17. For example, the max. output frequency Pr.01-00=60Hz, Pr.08-17=10.0%, PID compensation value will increase output frequency 6.00Hz. 60.00Hz × 100.00% × 10.0% = 6.00Hz

38 - 18 Setting of Sleep Mode Function

Factory Setting: 0

Settings 0: Follow PID output command

1: Follow PID feedback signal

- When Pr.08-18=0, the unit of Pr08-10 and that of Pr.08-11 becomes frequency. The settings then become 0.00~599.00Hz.
- When Pr.08-18=1, the unit of Pr08-10 and that of Pr.08-11 switches to percentage. The settings then switch to 0~200.00%.

✓ 38 - 19 Wake-up Integral Limit

Settings 0.0~200.0%

The wake-up integral limit of the VFD is to prevent sudden high speed running when the VFD wakes up. The wake-up integral frequency limit=(01-00×08-19%)

The Pr.08-19 is used to reduce the reaction time from sleep to wake-up.

B - 2 **B** PID Mode Selection

Factory Setting: 0

Factory Setting: 50.0

Settings 0: Serial connection

1: Parallel connection

- When setting is 0, serial connection, it uses conventional PID control structure.
- When setting is 1, parallel connection, proportional gain, integral gain and derivative gain are independent. The P, I and D can be customized to fit users' demand.
- Pr.08-20 determines the primary low pass filter time when in PID control. Setting a large time constant may slow down the response rate of drive.
- Output frequency of PID control will filter by primary low pass function. This function could filter mix frequencies. A long primary low pass time means filter degree is high and vice versa.
- Inappropriate setting of delay time may cause system error.
- PI Control: controlled by the P action only, and thus, the deviation cannot be eliminated entirely. To eliminate residual deviations, the P + I control will generally be utilized. And when the PI control is utilized, it could eliminate the deviation incurred by the targeted value changes and the constant external interferences. However, if the I action is excessively powerful, it will delay the responding toward the swift variation. The P action could be used solely on the loading system that possesses the integral components.
- PD Control: when deviation occurred, the system will immediately generate some operation load that is greater than the load generated single handedly by the D action to restrain the increment

of the deviation. If the deviation is small, the effectiveness of the P action will be decreasing as well. The control objects include occasions with integral component loads, which are controlled by the P action only, and sometimes, if the integral component is functioning, the whole system will be vibrating. On such occasions, in order to make the P action's vibration subsiding and the system stabilizing, the PD control could be utilized. In other words, this control is good for use with loadings of no brake functions over the processes.

- PID Control: Utilize the I action to eliminate the deviation and the D action to restrain the vibration, thereafter, combine with the P action to construct the PID control. Use of the PID method could obtain a control process with no deviations, high accuracies and a stable system.
- Serial connection

Parallel connection

After the sleep frequency is reached, the system will begin to calculate the sleep time and the output frequency will drop immediately according to the setting of Pr01-13(1st deceleration time). If the deceleration time exceeds the preset sleep time, the frequency will continue to drop to 0Hz and the motor will go to sleep at 0Hz.

If the deceleration time (if there is a preset) does not reach the preset sleep time, the motor will remain at Pr01-11 (Lower Frequency) or remain at Pr01-07 (Output the lowest frequency setting), the motor will wait for the sleep time and go to sleep at 0Hz.

3. PID Target Percentage (Use PID, Pr.08-00 ≠ 0)

After reaching the PID target percentage and the feedback value percentage, the motor will start to calculate the sleep time. The output frequency will drop immediately after setting the first deceleration time of Pr01-13. If the motor has exceeded the preset sleep time, it will go to sleep at 0Hz.

However, if the deceleration time does not reach the preset sleep time, it will remain at the lower limit (if preset Pr01-11) or remain at the lowest output frequency of Pr01-07, then wait for the sleep time and go to sleep at 0Hz.

Example 01: PID negative feedback

- Pr08-10 must > Pr08-11
- 30kg is the reference
- Set the parameter:
 - Pr03-00=5 (AVI1 is PID feedback)
 - Pr 08-00=1 (PID negative feedback: AVI1
 - simulation input function select)
 - Pr 08-10=40% (Sleep reference:

12kg=40%*30kg)

Pr 08-11=20% (Wake-up reference: 6kg=20%*30kg)

Area	PID
	Physical quantity
Sloop groo	>12kg,
Sleep alea	motor goes into sleep
E veresive	between 6kg and 12kg,
Excessive	motor remains in the
area	current state
Wake-up	<6kg,
area	motor wakes-up

Case 01: If feedback >12kg, frequency decrease.

Case 02: If feedback <6kg, frequency increase.

Example 02: PID positive feedback

- Pr08-10 must < Pr08-11
- 30kg is the reference
- Set the parameter:

Pr03-00=5 (AVI1 is PID feedback)

Pr 08-00=4 (PID positive feedback: AVI1

simulation input function select)

Pr 08-10=110% (Sleep reference:

33kg=110%*30kg)

Pr 08-11=120% (Wake-up reference:

36kg=120%*30kg)

Case 01: If feedback <33kg, frequency decrease.

Case 02: If feedback >36kg, frequency increase.

Area	PID
	Physical quantity
Sloop area	>36kg,
Sleep alea	motor goes into sleep
	between 33kg and
Excessive	36kg,
area	motor remains in the
	current state
Wake-up	<33kg,
area	motor wakes-up

09 Communication Parameters

 \checkmark The parameter can be set during the operation.

Modbus RS-485

Pin 3, 6: GND

Pin 4: SG-Pin 5: SG+

Pin 1~2,7,8: Reserved

When using communication devices, connects AC drive with PC by using Delta IFD6530 or IFD6500.

COM1 Communication Address

Factory Setting: 1

If the AC motor drive is controlled by RS-485 serial communication, the communication address for this drive must be set via this parameter and each AC motor drive's communication address must be different.

8 <-- 1

RS-485

✓ ⑦ 9 - ⑦ ↓ COM1 Transmission Speed

Factory Setting: 9.6

Settings 4.8~115.2Kbps

This parameter is for set up the RS485 communication transmission speed.

Please set 4.8K, 9.6K, 19.2K, 38.4K, 57.6K and 115.2K. If the value is not including in the 6 type that mentioned, it will be replaced by 9.6K.

COM1 Transmission Fault Treatment

Factory Setting: 3

- Settings 0: Warn and keep operation
 - 1: Warn and ramp to stop
 - 2: Warn and coast to stop
 - 3: No warning and continue operation
- This parameter is to set the reaction of MODBUS transmission errors with the host. Detection time can be set in Pr09-03.

COM1 Time-out Detection

Factory Setting: 0.0

Settings 0.0~100.0 sec

It is used to set the communication transmission time-out.

COM1 Communication Protocol

Settings 1: 7, N, 2 for ASCII

- 2: 7, E, 1 for ASCII
- 3: 7, O, 1 for ASCII
- 4: 7, E, 2 for ASCII
- 5: 7, O, 2 for ASCII
- 6: 8, N, 1 for ASCII

Factory Setting: 1

7: 8, N, 2 for ASCII			
8: 8, E, 1 for ASCII			
9: 8, O, 1 for ASCII			
10: 8, E, 2 for ASCII			
11: 8, O, 2 for ASCII			
12: 8, N, 1 for RTU			
13: 8, N, 2 for RTU			
14: 8, E, 1 for RTU			
15: 8, O, 1 for RTU			
16: 8, E, 2 for RTU			
17: 8, O, 2 for RTU			

Control by PC or PLC (Computer Link)

A VFD-CP2000 can be set up to communicate on Modbus networks using one of the following modes: ASCII (American Standard Code for Information Interchange) or RTU (Remote Terminal Unit).Users can select the desired mode along with the RS-485 serial port communication protocol in Pr.09-00.

MODBUS ASCII (American Standard Code for Information Interchange): Each byte data is the combination of two ASCII characters. For example, a 1-byte data: 64 Hex, shown as '64' in ASCII, consists of '6' (36Hex) and '4' (34Hex).

1. Code Description

Communication protocol is in hexadecimal, ASCII:"0", "9", "A", "F", every 16 hexadecimal represents ASCII code. For example:

Character	ʻ0'	'1'	'2'	'3'	'4'	'5'	'6'	'7'
ASCII code	30H	31H	32H	33H	34H	35H	36H	37H
Character	'8'	'9'	'A'	'B'	ʻC'	'D'	'E'	'F'

42H

43H

44H

45H

46H

2. Data Format

ASCII code

10-bit character frame (For ASCII):

38H

39H

(7, N, 2)

41H

Start bit	0	1	2	3	4	5	6	Even parity	Stop bit	
← 7-data bits →										

3. Communication Protocol

Communication Data Frame: ASCII mode

STX	Start character = ':' (3AH)
Address Hi	Communication address:
Address Lo	8-bit address consists of 2 ASCII codes
Function Hi	Command code:
Function Lo	8-bit command consists of 2 ASCII codes
DATA (n-1)	Contents of data:
	Nx8-bit data consist of 2n ASCII codes
DATA 0	n≤16, maximum of 32 ASCII codes
LRC CHK Hi	LRC check sum:
LRC CHK Lo	8-bit check sum consists of 2 ASCII codes
END Hi	End characters:
END Lo	END1= CR (0DH), END0= LF(0AH)

START	A silent interval of more than 10 ms
Address	Communication address: 8-bit address
Function	Command code: 8-bit command
DATA (n-1)	Contents of data:
DATA 0	
CRC CHK Low	CRC check sum:
CRC CHK High	16-bit check sum consists of 2 8-bit characters
END	A silent interval of more than 10 ms

Communication Data Frame: RTU mode

Address (Communication Address)

00H: broadcast to all AC drives

01H: AC drive of address 01

0FH: AC drive of address 15

10H: AC drive of address 16

FEH: AC drive of address 254

• Function (Function code) and DATA (data characters)

The format of data characters depends on the function code.

03H: read data from register

06H: write single register

10H: write continuous multiple data

Example: reading continuous 2 data from register address 2102H, AMD address is 01H.

ASCII mode:

:

Command	Message:	Response Message		
STX	·	STX	(.) -	
Address	·0'	Address	·0'	
Address	'1'	Address	'1'	
Function	·0'	Function	·0'	
Function	'3'	Function	'3'	
	'2'	Number of register	·0'	
Starting register	'1'	(count by byte)	'4'	
	·0'		'1'	
	'2'	Content of starting	'7'	
	·0'	register 2102H	'7'	
Number of register	·0'		·0'	
(count by word)	·0'		·0'	
	'2'	Content of register	·0'	
I PC Chook	'D'	2103H	·0'	
	'7'		·0'	
	CR	L BC Chook	'7'	
	LF		<u>'1'</u>	
		END	CR	

RTU mode:			
Command	Message:	Response	e Message
Address	01H	Address	01H
Function	03H	Function	03H
Starting data register	21H	Number of register	04H
	02H	(count by byte)	
Number of register	00H	Content of register	17H
(count by word)	02H	address 2102H	70H
CRC CHK Low	6FH	Content of register	00H
CRC CHK High	F7H	address 2103H	00H
		CRC CHK Low	FEH
		CRC CHK High	5CH

06H: single write, write single data to register.

Example: writing data 6000(1770H) to register 0100H. AMD address is 01H.

ASCII mode:

Command Message:		Response Message	
STX	(_) -	STX	(_) -
Address	ʻ0'	Address	·0'
	'1'		'1'
Function	·0'	Function	·0'
	'6'		' 6'
Target register	·0'	Target register	·0'
	'1'		'1'
	·0'		·0'
	·0'		·0'
Register content	'1'	Register content	'1 '
	'7'		'7'
	'7'		'7'
	·0'		·0'
LRC Check	'7'	LRC Check	'7'
	'1'		'1'
END	CR	END	CR
	LF		LF

RTU mode:

Command Message:		Response Message	
Address	01H	Address	01H
Function	06H	Function	06H
Target register	01H	Target register	01H
	00H		00H
Register content	17H	Register content	17H
	70H		70H
CRC CHK Low	86H	CRC CHK Low	86H
CRC CHK High	22H	CRC CHK High	22H

10H: write multiple registers (write multiple data to registers) (at most 20 sets of data can be written simultaneously)

Example: Set the multi-step speed,

Pr.04-00=50.00 (1388H), Pr.04-01=40.00 (0FA0H). AC drive address is 01H.

ASCII Mode

Command Message:		
4_7 		
ʻ0'		
'1'		
'1'		
ʻ0'		
ʻ0'		
'4'		
ʻ0'		
·0'		
'2'		
ʻ0'		
'4'		
'1'		
'3'		
'8'		
'8'		
ʻ0'		
'F'		
'A'		
ʻ0'		
' 9'		
'B'		
CR		
LF		

Response Message		
STX	(_)	
ADR 1	·0'	
ADR 0	'1'	
CMD 1	'1'	
CMD 0	' 0'	
	' 0'	
Torgot register	'4'	
Target register	' 0'	
	ʻ0'	
	ʻ0'	
Number of register	' 0'	
(count by word)	' 0'	
	'2'	
LRC Check	'E'	
	' 9'	
	CR	
ENU	LF	

RTU mode:

Command	Message:	Re
ADR	01H	ADR
CMD	10H	CMD 1
Torget register	04H	Target regist
larget register	00H	
Number of register	00H	Number of reg
(Count by word)	02H	(Count by wo
Quantity of data (Byte)	04	CRC Check I
The first data contant	13H	CRC Check H
I ne first data content	88H	
The second data	0FH	
content	A0H	
CRC Check Low	·9'	
CRC Check High	'A'	

Response Message:		
ADR	01H	
CMD 1	10H	
Target register	04H	
	00H	
Number of register	00H	
(Count by word)	02H	
CRC Check Low	40H	
CRC Check High	F8H	

Check sum

ASCII mode:

LRC (Longitudinal Redundancy Check) is calculated by summing up, module 256, and the values of the bytes from ADR1 to last data character then calculating the hexadecimal representation of the 2's-complement negation of the sum.

For example,

01H+03H+21H+02H+00H+02H=29H, the 2's-complement negation of 29H is D7H.
RTU mode:

CRC (Cyclical Redundancy Check) is calculated by the following steps:

Step 1:

Load a 16-bit register (called CRC register) with FFFFH.

Step 2:

Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16-bit CRC register, putting the result in the CRC register.

Step 3:

Examine the LSB of CRC register.

Step 4:

If the LSB of CRC register is 0, shift the CRC register one bit to the right with MSB zero filling, then repeat step 3. If the LSB of CRC register is 1, shift the CRC register one bit to the right with MSB zero filling, Exclusive OR the CRC register with the polynomial value A001H, then repeat step 3.

Step 5:

Repeat step 3 and 4 until eight shifts have been performed. When this is done, a complete 8-bit byte will be processed.

Step 6:

Repeat step 2 to 5 for the next 8-bit byte of the command message. Continue doing this until all bytes have been processed. The final contents of the CRC register are the CRC value. When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, i.e. the lower order byte will be transmitted first.

The following is an example of CRC generation using C language. The function takes two arguments:

Unsigned char* data \leftarrow a pointer to the message buffer

Unsigned char length \leftarrow the quantity of bytes in the message buffer

The function returns the CRC value as a type of unsigned integer.

Unsigned int crc_chk(unsigned char* data, unsigned char length)

```
{
```

```
int j;
unsigned int reg_crc=0Xffff;
while(length--){
    reg_crc ^= *data++;
    for(j=0;j<8;j++){
        if(reg_crc & 0x01){ /* LSB(b0)=1 */
            reg_crc=(reg_crc>>1) ^ 0Xa001;
        }else{
            reg_crc=reg_crc >>1;
        }
    }
```

```
return reg_crc;
```

// return register CRC

4. Address list

}

}

Content	Register	Function		
AC drive parameters	GGnnH	GG means parameter group, nn means parameter number, for		
		example, the address of Pr04-01 is 0401H.		
Command write only	2000H	bit1~0	00B: No function	
			01B: Stop	
			10B: Run	
			11B: JOG	
		bit3~2	Reserved	
		bit5~4	00B: No function	
			01B: FWD	
			10B: REV	
			11B: Change direction	
		bit7~6	00B: 1 st accel./decel.	
			01B: 2 nd accel/decel	
			10B: 3 rd accel/decel	
			11B: 4 th accel/decel	
		bit11~8	000B: master speed	
			0001B: 1 st Step Speed Frequency	
			0010B: 2 nd Step Speed Frequency	
			0011B: 3 rd Step Speed Frequency	
			0100B: 4 th Step Speed Frequency	
			0101B: 5 th Step Speed Frequency	
			0110B: 6 th Step Speed Frequency	
			0111B: 7 th Step Speed Frequency	
			1000B: 8 th Step Speed Frequency	
			1001B: 9 th Step Speed Frequency	
			1010B: 10 th Step Speed Frequency	
			1011B: 11 th Step Speed Frequency	
			1100B: 12 th Step Speed Frequency	
			1101B: 13 th Step Speed Frequency	
			1110B: 14 th Step Speed Frequency	
			1111B: 15 th Step Speed Frequency	
		bit12	1: Enable bit06~11 function	
		bit13~14	00B: No function	
			01B: Operated by digital keypad	

Content	Register	Function		
			10B: Operated by Pr.00-21 setting	
			11B: Change operation source	
		bit15	Reserved	
	2001H	Frequency command(XXX.XXHz)		
	2002H	bit0	1: EF (external fault) on	
		bit1	1: Reset	
		bit2	1: B.B ON	
		bit3~15	Reserved	
Status monitor read	2100	High Byte: Warn Code		
only	210011	Low Byte: Error Code		
	2101H	bit0~1	AC Drive Operation Status	
			00B: Drive stops	
			01B: Drive decelerating	
			10B: Drive standby	
			11B: Drive operating	
		bit2	1: JOG Command	
		bit3~4	Operation Direction	
			00B: FWD run	
			01B: From REV run to FWD run	
			10B: From FWD run to REV run	
			11B: REV run	
		bit8	1: Master frequency controlled by communication	
			interface	
		bit9	1: Master frequency controlled by analog signal	
		bit10	1: Operation command controlled by	
			communication interface	
		bit11	1: Parameter locked	
		bit12	1: Enable to copy parameters from keypad	
		bit15~13	Reserved	
	2102H	Frequency com	nmand (XXX.XX Hz)	
	2103H	Output frequency (XXX.XX Hz)		
	2104H	Output current $(XX.XXA)$. When current is higher than 655.35,it		
		will shift decimal as(XXX.XA). The decimal can refer to High byte		
		of 211F.		
	2105H	DC-BUS Voltage (XXX.XV)		
	2106H	Output voltage(XXX.XV)		
	2107H	Current step number of Multi-Step Speed Operation		
	2108H	Reserved		
	2109H	Counter value		
	210AH	Power Factor Angle (XXX.X)		

Content	Register	Function	
	210BH	Output Torque (XXX.X%)	
ĺ	210CH	Actual motor speed (XXXXXrpm)	
	210DH	210DH Reserved	
	210EH	Reserved	
	210FH	Power output (X.XXX KWH)	
ĺ	2116H	Multi-function display (Pr.00-04)	
		Max. operation frequency (Pr.01-00) or Max. user defined value (Pr.00-26)	
		When Pr00-26 is 0, this value is equal to Pr01-00 setting	
	211BH	When Pr00-26 is not 0, and the command source is Keypad, this	
		value = Pr00-24 * Pr00-26 / Pr01-00	
		When Pr00-26 is not 0, and the command source is 485, this	
		value = Pr09-10 * Pr00-26 / Pr01-00	
	211FH	High byte: decimal of current value (display)	
		Display output current (A). When current is higher than 655.35,it	
	2200H	will shift decimal as(XXX.XA). The decimal can refer to High byte	
ļ		of 211F.	
	2201H	Display counter value (c)	
	2202H	Actual output frequency (XXXXXHz)	
	2203H	DC-BUS voltage(XXX.XV)	
	2204H	Output voltage(XXX.XV)	
	2205H	Power angle (XXX.X)	
	2206H	Display actual motor speed kW of U, V, W(XXXXXkW)	
	2207H	Display motor speed in rpm estimated by the drive or encoder feedback (XXXXXrpm)	
	2208H	Display positive/negative output torque in %, estimated by the drive (t0.0: positive torque, -0.0: negative torque) (XXX.X%)	
	2209H	Reserved	
	220AH	PID feedback value after enabling PID function(XXX.XX%)	
	220BH	Display signal of AVI1 analog input terminal, 0~10V corresponds to 0.00~100.00% (1.) (as Pr. 00-04 NOTE 2)	
	220CH	Display signal of ACI analog input terminal, 4~20mA/0~10V corresponds to 0.00~100.00% (2.) (as Pr. 00-04 NOTE 2)	
	220DH	Display signal of AVI2 analog input terminal, 0V~10V corresponds to 0.00~100% (3.) (as Pr. 00-04 NOTE 2)	
	220EH	IGBT temperature of drive power module (XXX.X°C)	
	220FH	The temperature of capacitance (XXX.X°C)	
	2210H	The status of digital input (ON/OFF), refer to Pr.02-12 (as Pr. 00-04 NOTE 3)	

Content	Register	Function	
	2211H	The status of digital output (ON/OFF), refer to Pr.02-18 (as Pr. 00-04 NOTE 4)	
	2212H	The multi-step speed that is executing (S)	
2213H		The corresponding CPU pin status of digital input (d.) (as Pr. 00-04 NOTE 3)	
	2214H	The corresponding CPU pin status of digital output (O.) (as Pr. 00-04 NOTE 4)	
	2215H ~ 2218H	Reserved	
	2219H	Display times of counter overload (XXX XX%)	
	221AH	GFF (XXX.XX%)	
	221BH	DCbus voltage ripples (XXX.XV)	
	221CH	PLC register D1043 data (C)	
	221DH	Reserved	
	221EH	User page displays the value in physical measure	
	221FH	Output Value of Pr.00-05(XXX.XXHz)	
	2220H	Number of revolutions of the motor	
	2221H	Motor running position	
2222H Fan speed of the d		Fan speed of the drive (XXX%)	
	2223H	Control mode of the drive 0: speed mode	
	2224H	Carrier frequency of the drive (XXKHZ)	
	2225H	Reserved	
		Drive status	
		bit 1~0 00b: No direction	
		01b: Forward	
		10b: Reverse	
	2226H	bit 3~2 01b: Driver ready	
		10b: Error	
		bit 4 0b: Motor drive did not output	
		1b: Motor drive did output	
		Dit 5 UD: No alarm	
		D: Have Alarm	
	2227H	(XXXX Nt-m)	
	2228H	Reserved	
	2229H	KWH display(XXXX.X)	
	222AH		
	~	Reserved	
	222DH		

Content	Register	Function
	222EH	PID reference (XXX.XX%)
	222FH	PID offset (XXX.XX%)
	2230H	PID output frequency (XXX.XXHz)
	2231H	Hardware ID

5. Exception response:

The AC motor drive is expected to return a normal response after receiving command messages from the master device. The AC motor drive does not receive the messages due to a communication error An exception response will be returned to the master device and the most significant bit of the original command code is set to 1. An error message "CExx" will be displayed on the keypad of AC motor drive. The xx of "CExx" is a decimal code equal to the exception code that is described below.

Example:

ASCII	mode:	RTU mode:		
STX	(.) -	Address	01H	
Address	·0'	Function	86H	
Address	'1'	Exception code	02H	
Function	'8'	CRC CHK Low	C3H	
FUNCTION	'6'	CRC CHK High	A1H	
Exception code	·0'			
	'2']		
	'7']		
	'7']		
	CR]		
END	LF			

The explanation of exception codes:

Exception code	Explanation
1	Function code is not supported or unrecognized.
2	Address is not supported or unrecognized.
3	Data is not correct or unrecognized.
4	Fail to execute this function code
10	Transformation for over-time duration

✓ ⑦ 9 - ⑦ 9 Response Delay Time

Factory Setting: 2.0

Settings 0.0~200.0ms

This parameter is the response delay time after AC drive receives communication command as shown in the following.

39 - 10 Main Frequency of the Communication

Factory Setting: 60.00

Settings 0.00~599.00Hz

When Pr.00-20 is set to 1 (RS485 communication). The AC motor drive will save the last frequency command into Pr.09-10 when abnormal turn-off or momentary power loss. After reboots the power, it will regard the frequency set in Pr.09-10 if no new frequency command is inputted. When frequency command of 485 is changed (the source of frequency command needs to be set as MODBUS), this parameter is also be changed.

N	89-	;;	Block Transfer 1
×	89-	12	Block Transfer 2
N	89-	:3	Block Transfer 3
N	89-	¦Ч	Block Transfer 4
×	89-	15	Block Transfer 5
×	89-	18	Block Transfer 6
×	89-	:]	Block Transfer 7
×	89-	18	Block Transfer 8
×	89-	19	Block Transfer 9
×	89-	20	Block Transfer 10
N	89-	21	Block Transfer 11
×	89-	22	Block Transfer 12
×	89-	23	Block Transfer 13
N	89-	24	Block Transfer 14
N	89-	25	Block Transfer 15
N	89-	26	Block Transfer 16

Settings 0~FFFFh

There is a group of block transfer parameter available in the AC motor drive (Pr.09-11 to Pr.09-26). Through communication code 03H, users can use Pr.09-11 to Pr.09-26 to save those parameters that they want to read.

09-30	Communication Decoding Method
-------	-------------------------------

Factory Setting: 1

Factory Setting: 0000

Settings 0: Decoding Method 1 (20xx)

1: Decoding Method 2 (60xx)

		Decoding Method 1	Decoding Method 2	
Source of	Digital Keypad	Digital keypad controls the drive action regardless decoding method 1 or 2.		
Operation	External Terminal	External terminal controls the drive action regardless decoding method 1 or 2.		
Control	RS-485	Refer to address: 2000h~20FFh Refer to address: 6000h ~ 60FF		
	CANopen	Refer to index: 2020-01h~2020-FFh	Refer to index:2060-01h ~ 2060-FFh	
	Communication Card	Refer to address: 2000h ~ 20FFh	Refer to address: 6000h ~ 60FFh	
	PLC	PLC commands the drive action regardless decoding method 1 or 2.		

		Factory Setting: (
Settings	-12: Internal PLC Control	
	-10: Internal Communication Master	
	-8: Internal Communication Slave 8	
	-7: Internal Communication Slave 7	
	-6: Internal Communication Slave 6	
	-5: Internal Communication Slave 5	
	-4: Internal Communication Slave 4	
	-3: Internal Communication Slave 3	
	-2: Internal Communication Slave 2	
	-1: Internal Communication Slave 1	
	0: Modbus 485	
	1: BACnet	

When it is defined as internal PLC control, see CH16-12 for Remote IO control application (by using MODRW).

PLC command force to 0

Factory Setting: 0000

Setting 0000~FFFFh

It defines the action that before PLC scans time sequence, the frequency command or speed command needs to be cleared as 0 or not.

bit	Explanation
bit0	Before PLC scan, set up PLC target frequency=0
bit1	Before PLC scan, set up the PLC target torque=0
bit2	Before PLC scan, set up the speed limit of torque control mode=0

B - 35 PLC Address

Factory Setting: 2

Factory Setting: 0

Settings 1~254

39-35 CANopen Slave Address

Settings 0: Disable

0~127

CANopen Speed

Settings 0: 1Mbps

- 1: 500Kbps
- 2: 250Kbps
- 3: 125Kbps

Factory Setting: 0

4: 100Kbps (Delta only)

5: 50Kbps

39-39 CANopen Warning Record

		Factory Setting: Ready only
Settings	bit 0: CANopen Guarding Time out	
	bit 1: CANopen Heartbeat Time out	
	bit 2: CANopen SYNC Time out	
	bit 3: CANopen SDO Time out	
	bit 4: CANopen SDO Buffer Overflow	
	bit 5: Can Bus Off	
	bit 6: Error protocol of CANOPEN	
	bit 8: The setting values of CANopen indexs are	e fail
	bit 9: The setting value of CANopen address is	fail
	bit10: The checksum value of CANopen indexs	is fail

09-40 **CANopen Decoding Method** Factory Setting: 1 Settings 0: Delta defined decoding method 1: CANopen Standard DS402 protocol 89-4 **CANopen Status** Factory Setting: Read Only Settings 0: Node Reset State 1: Com Reset State 2: Boot up State 3: Pre Operation State 4: Operation State 5: Stop State 09-42 **CANopen Control Status** Factory Setting: Read Only Settings 0: Not ready for use state 1: Inhibit start state 2: Ready to switch on state 3: Switched on state 4: Enable operation state 7: Quick stop active state 13: Error reaction activation state 14: Error state <u> []</u> **[**] **[**] **- [**] **CANopen Master Function** Factory Setting: 0

Settings 0: Disable

1: Enable

N	89	8-70	Address	of Communication Card (for DeviceNet or PROFIB	US)
					Factory Setting: 1
			Settings	DeviceNet: 0~63	
				Profibus-DP: 1~125	
N	89	} -] ;	Setting of	f DeviceNet Speed (for DeviceNet)	
-					Factory Setting: 2
			Settings	Standard DeviceNet:	
				0: 125Kbps	
				1: 250Kbps	
				2: 500Kbps	
				3: 1Mbps (Delta only)	
				Non standard DeviceNet: (Delta only)	
				0: 10Kbps	
				1: 20Kbps	
				2: 50Kbps	
				3: 100Kbps	
				4: 125Kbps	
				5: 250Kbps	
				6: 500Kbps	
				7: 800Kbps	
				8: 1Mbps	
N	89	8-72	Other Set	tting of DeviceNet Speed (for DeviceNet or PROFIE	BUS)
					Factory Setting: 0
			Settings	0: Standard DeviceNet	
				1: Nonstandard DeviceNet	
		It need	s to use w	ith Pr.09-71.	
		Setting	0: the ba	ud rate can only be set to 125Kbps, 250Kbps or 50	0Kbps.
	Ŵ	Setting	1: setting	of DeviceNet communication rate can be the same	e as CANopen (setting 0-8).
N	89	8 - 75	IP Config	uration of the Communication Card (for MODBUS	TCP)
-					Factory Setting: 0
			Settings	0~65535	
				0: Static IP	
				1: DynamicIP (DHCP)	
		Setting	0: it need	s to set IP address manually.	
		Setting	1: IP add	ress will be auto set by host controller.	
N	<u>n</u> 9	8 - 78	IP Addres	ss 1 of the Communication Card (for Modbus TCP)	
N	00	2 - 7 7	IP Addres	ss 2 of the Communication Card (for Modbus TCP)	
N	00	2 - 78	IP Addres	as 3 of the Communication Card (for Modbus TCP)	
	00	2 - 70	IP Addres	as 4 of the Communication Card (for Modbus TCP)	
· ·					Factory Setting: 0

Settings 0~65535

Factory Setting: 0

Pr.09-76~09-79 needs to use with communication card.

- 69 - 88 Address Mask 1 of the Communication Card (for Modbus TCP) 119 - 8 Address Mask 2 of the Communication Card (for Modbus TCP) -<u>nq</u> - 82 Address Mask 3 of the Communication Card (for Modbus TCP) Address Mask 4 of the Communication Card (for Modbus TCP) Factory Setting: 0 Settings 0~65535 - 84 Gateway Address 1 of the Communication Card (for Modbus TCP) Gateway Address 2 of the Communication Card (for Modbus TCP)
- Gateway Address 3 of the Communication Card (for Modbus TCP)
- Gateway Address 4 of the Communication Card (for Modbus TCP)

Factory Setting: 0

	Se	ttings 0~65535
~	09-88 Pa	ssword for Communication Card (Low word) (for Modbus TCP)
/	09-89 Pa	ssword for Communication Card (High word) (for Modbus TCP)

Factory Setting: 0

Settings 0~99 Image: Setting in the set of the set o

Factory Setting: 0

Settings 0: Disable

1: Reset, return to factory setting

✓ ☐ 9 - 9 ↓ Additional Setting for Communication Card (for Modbus TCP)

Factory Setting: 1

Se	ettings	bit 0: Enable IP Filter
		bit 1: Internet parameters enable(1bit)
		When IP address is set up, this bit needs to be enabled to write down
		the parameters. This bit will change to disable when it finishes saving
		the update of internet parameters.
		bit 2: Login password enable(1bit)
		When enter login password, this bit will be enabled. After updating the
		parameters of communication card, this bit will change to disable.
09-92 st	atus of (Communication Card (for Modbus TCP)
		Factory Setting: 0
Se	ettings	bit 0: password enable
		When the communication card is set with password, this bit is enabled.
		When the password is clear, this bit is disabled.

10 Speed Feedback Control Parameters

✓ This parameter can be set during operation.

Settings 0.00~599.00Hz Factory Setting: 20.00

- The parameter is the switch point which is from high frequency to low frequency.
- If the switch point is too low, motor will not generate enough back EMF to let the speed Ш

estimator measure the right position and speed of rotator when the frequency of switch point is running.

If the switch point is too high, the active area of I/F will be too wide, which will generate larger current and cannot save energy. (The reason is that if the current of Pr.10-31 sets too high, and the high switch point will make the drive keeps outputting with the setting value of Pr.10-31).

✓ II - Ч I I/F mode, low pass-filter time

Factory Setting: 0.2

Settings 0.0~6.0 sec

- This parameter is the filter time of Pr.10-31.It can let magnetic field under I/F mode increased smoothly to the current command setting value.
- If you want to increase the size of Id slowly, you can adjust high to avoid the starting current output Step phenomenon; if you adjust to low (minimum 0), the faster the current rises, and there will be a Step phenomenon.

Initial Angle Detection Pulse Level

Factory Setting: 1.0

Settings 0.0~3.0 times of motor rated current

- This parameter is only available when Pr.10-53=2 or 3.
- The parameter influences the value of pulse during the angle detection. The larger the pulse is, the higher of the accuracy of rotator's position reaches. But it might cause an over current trip up more easily.
- Increase the parameter when the running direction and the command are opposite while start-up. If over current occurs in the start-up moment, then decrease the parameter.

11 - 49 Zero voltage time while start up

Factory Setting: 00.000

Settings 0.000~60.000 sec

- When the motor is in static status at the startup, the accuracy to estimate angles will be increased. In order to make the motor in "static status", the drive 3 phase U, V, W output 0V to motor to reach this goal. The Pr.10-49 setting time is the length of time when three-phase output 0V.
- It is possible that even when this parameter is being applied but the motor at the installation site cannot go into the "static status" caused by the inertia or by any external force. So, if the motor doesn't go into a complete "static status" in 0.2 sec, increase appropriately this setting value.
- This parameter is functional only when the setting of Pr.07-12 Speed Search during Startup $\neq 0$.
- When the Pr.10-49 is set too large, it will obviously delay the start-up time. But when the parameter is set to small, the braking capacity would be insufficient.

1 - **5** Injection Frequency

njection i requericy

Factory Setting: 500

Settings 0~1200Hz

This parameter is a high frequency injection command in PM SVC control mode, and usually it doesn't need to be adjusted. But if a motor's rated frequency (i.e. 400 Hz) is too close to the

frequency setting of this parameter (i.e. factory setting 500 Hz), the accuracy of angles detected will be affected. Therefore, refer to the setting of Pr.01-01 before adjusting this parameter.

- If the setting value of Pr.00-17 is lower than Pr.10-51*10, then increase the frequency of carrier wave.
- \square Pr.10-51 is valid only when Pr.10-53 = 2.

✓ 18 - 52 Injection Magnitude

Factory Setting:15.0/30.0

Settings 0.0~200.0V

- The parameter is magnitude command of high frequency injection signal in PM SVC control mode.
- Increasing the parameter can get more accurate estimated value of angle. But the noise of electromagnetic might be louder if the setting value is too high.
- This parameter will be received when motor's parameter is"Auto". And this parameter will influence the accuracy of angel's estimation.
- When the ratio of salient pole (Lq/Ld) is lower, increase Pr. 10-52 to make angle detection be accurate.
- \square Pr.10-52 is valid only when Pr. 10-53 = 2.

10 - 53 PM Motor Rotor Initial Angle Position Detection Method

Factory Setting: 0

Settings 0 : Disabled

- 1 : Internal 1/4 rated current attracting the rotor to zero degrees
- 2 : High frequency injection
- 3 : Pulse injection
- It is suggested to set as "2" if it is IPM; set as "3" if it is SPM. If there is bad effect when set as "2" or "3", then set as "1".

11 Advanced Parameters

Group 11 Advanced parameters are reserved.

12 Pump Parameters

✓ This parameter can be set during operation.

determined by Pr.12-01. In accordance with the Fixed Time Circulation of Pr.12-02, you can adjust the switching time between Start/Stop of each motor. That means when an operating motor reaches the time setting of Pr.12-02, CP2000 will stop that motor. Then after the delay time setting of Pr.12-03, next motor will start operating. See diagram below.

Diagram 12-1: Sequential Diagram of the Fixed Time Circulation (by time)

Disable Motors' Output

Set the Multifunction Input Commands as Disable Motors' Output can stop corresponding motors. The settings are:

Pr 02-01~Pr02-06 =	60	61	62	63	64	65	66	67	68
Disable Motors' Output	ALL	1	2	3	4	5	6	7	8

When a motor's output is disabled, this motor will park freely.

Wiring: Fixed Time Circulation (by time) Control can control up to 8 motors. The diagram 12-2 is an example of controlling 4 motors at the same time.

Diagram 12-2: Wiring

12-01

Number of Motors to be connected

Factory Setting: 1

Settings 1~8

Number of Motors: Maximum 8 motors. After setting number of motor to be connected at the same time, multi-function output terminals will follow automatically the setting as shown in the table below.

P12-01	01	02	03	04	05	06	07	08
P02-13	55	55	55	55	55	55	55	55
P02-14		56	56	56	56	56	56	56
P02-15			57	57	57	57	57	57
P02-36				58	58	58	58	58
P02-37					59	59	59	59
P02-38						60	60	60
P02-39							61	61
P02-40								62

Table 1: Setting of Multi-function Output Terminal on Circulating Motors

; ? - **; ?** Operating time of each motor (minutes)

Factory Setting: 0

Settings 0~65500 min

Setting of Fixed Time Circulation by minute. If Pr.12-02 = 0, that means stop timing, the current running motors will keep on operating until a stop command is given.

12-33 Delay Time due to the Acceleration (or the Increment) at Motor Switching (seconds)

Factory Setting: 1.0

Settings 0.0~3600.0 sec

Delay time when switching motors in seconds. When the current running motors reach the time setting of Pr.12-02, CP2000 will follow the delay time setting of Pr.12-03 and then switch to run the next motor.

12 - [] 4 Delay Time due to the Deceleration (or the Decrement) at Motor Switching (seconds)

Factory Setting: 1.0

Settings 0.0~3600.0 sec

Image: A state of the state

Factory Setting: 10.0

Settings 0.0 to 3600.0 sec

□ Fixed quantity circulation with PID

Sequential Diagram

In this mode, CP2000 can control up to 4 motors to increase controlling flow quantity and pressure range. When controlling flow quantity, motors will be in parallel connection. When

controlling pressure range, motors will be in series connection.

If need to increase flow quantity or pressure range, CP2000 will increase first motor's pressure from 0Hz to the largest operating frequency. If output frequency reaches the frequency setting of Pr.12-06 and delay time of Pr.12-05, then CP2000 will delay the time setting of Pr.12-03, and switch the motor to use mains electricity and delay the time setting of Pr.12-03 to run next motor. If necessary, other motors will be activated in sequence. See sequential diagram of 12-3 and 12-4.

Diagram 12-3: Sequence of Fixed quantity circulation with PID - Increasing Demand

Diagram 12-4: Sequence of switching motors at fixed quantity circulation with PID - Increasing Demands

However, if decreasing demands when flow quantity and pressure are too big, CP2000 will stop the current operating motors and wait for the delay time setting of Pr.12-04. Then keep on doing this until the last motor stop using mains electricity. See sequential diagram 12-5 and 12-6 below.

Diagram 12-5: Sequence of switching motors at fixed quantity circulation with PID

Parameter Setting

Parameter setting	Description											
Pr.12-00=2	Choose F	Choose Fixed quantity circulation with PID										
	Number of Motors: Maximum 4 motors. After setting number of motor to be connected a											
	the same time, multi-function output terminals will follow automatically the setting as											
	shown in the table below.											
	P12-01	01	01	02	02	03	03	04	04			
	P02-13	55	55	55	55	55	55	55	55	Motor #1 by Drive		
	P02-14		56	56	56	56	56	56	56	Motor #1 by Mains		
Pr.12-01=X	P02-15			57	57	57	57	57	57	Motor #2 by Drive		
	P02-36				58	58	58	58	58	Motor #2 by Mains		
	P02-37					59	59	59	59	Motor #3 by Drive		
	P02-38						60	60	60	Motor #3 by Mains		
	P02-39							61	61	Motor #4 by Drive		
	P02-40								62	Motor #4 by Mains		
	Table 2: S	Settin	g of l	Multi-	funct	ion C	Outpu	t Terr	ninal	on Circulating Motors		
Pr.12-03=X	Delay Tim	ne du	e to t	he Ac	celei	ratior	ı (or t	he In	crem	ent) at Motor Switching (unit: second		
Pr.12-04=X	Delay Tim	ne du	e to t	he D	ecele	ratio	n (or	the [Decre	ement) at Motor Switching (unit: sec)		
Pr.12-05=X	Delay tim	e whi	le fix	ed qu	antit	y circ	ulatio	on at	Moto	r Switching with PID (unit: seconds)		
Pr.12-06=X	Frequenc	y whe	en sw	/itchi	ng me	otors	at fix	ed qu	uantit	ty circulation (Hz)		

Disable Motor Output

Set the Multifunction Input Commands as Disable Motors' Output can stop corresponding motors. The settings are:

Pr.02-01~Pr.02-06=	60	61	62	63	64	65	66	67	68
Disable Motor Output	ALL	1	2	3	4	5	6	7	8

When a motor's output is disabled, this motor will park freely

Fixed quantity circulation with PID can control up to 4 motors. The Diagram 12-7 below is an example of controlling 4 motors.

Diagram 12-7

Frequency when switching motors at fixed quantity circulation (Hz)

Factory Setting: 60.00

Settings 0.0~599.00Hz

When the drive's output frequency reaches the setting value of Pr.12-06, the system will start preparing to switch motors.

; ? - **; ?** Action to do when Fixed Quantity Circulation breaks down

Factory Setting: 0

Settings 0: Turn off all output

1: Motors powered by mains electricity continues to operate

Frequency when stopping auxiliary motor (Hz)

Factory Setting: 0

Settings 0.00~599.00Hz

When the output frequency is smaller than the setting value of Pr.12-08 and remains at the time setting of Pr.12-04, motors will be shut down one by one.

Fixed quantity control with PID

In this mode, CP2000 can control up to 8 motors to increase controlling flow quantity and pressure range.

CP2000 connects directly to a main motor while the rest of motors are using mains electricity and controlled by a relay. When controlling flow quantity, motors will be in parallel connection. When controlling pressure range, motors will be in series connection

If need to increase flow quantity or pressure range, CP2000 will increase the main motor's pressure from 0Hz to the largest operating frequency. If necessary, CP2000 will switch in sequence the motors to use mains electricity. See sequential diagram of 12-8 and 12-9.

Diagram 12-8: Fixed quantity control with PID - Increasing Demand

Diagram 12-9: Sequence of switching motors at fixed quantity control with PID - Increasing Demand

However, if the flow quantity or pressure is too big, CP2000 will stop, one by one, the motors from using mains electricity until CP2000 decrease the main motor's frequency to 0Hz. See diagram 12-10 and diagram 12-11.

Diagram 12-10: Sequence of switching motors at fixed quantity control with PID – Decreasing Demand

Diagram 12-10: Sequence of switching motors at fixed quantity control with PID - Decreasing Demand

Parameter Setting	Description												
Pr.12-00=3	Choose F	Choose Fixed quantity control											
	Number of Motors: Maximum 8 motors. After setting number of motor to be conne												
the same time, multi-function output termin									s will	follow automatically the setting as			
	shown in	shown in the table below.											
	P12-01	01	02	03	04	05	06	07	80				
	P02-13	55	55	55	55	55	55	55	55	Motor #1 by Mains			
	P02-14		56	56	56	56	56	56	56	Motor #2 by Mains			
Pr.12-01=X	P02-15			57	57	57	57	57	57	Motor #3 by Mains			
	P02-36				58	58	58	58	58	Motor #4 by Mains			
	P02-37					59	59	59	59	Motor #5 by Mains			
	P02-38						60	60	60	Motor #6 by Mains			
	P02-39							61	61	Motor #7 by Mains			
	P02-40								62	Motor #8 by Mains			
	Table 2: S	Setting	g of N	/ulti-	functi	ion O	utput	Tern	ninal	on Circulating Motors			
Pr.12-05=X	Delay time	e whi	le fix	ed qu	antit	y circ	ulatio	on at	Moto	r Switching (seconds)			
Pr.12-06=X	Frequenc	y whe	en sv	vitchi	ng me	otors	at fix	ed qu	uantit	ty circulation (Hz)			

Disable Motor's Output

Set the Multifunction Input Commands as Disable Motors' Output can stop corresponding motors. The settings are:

Pr.02-01~Pr.02-06=	60	61	62	63	64	65	66	67	68
Disable Motor's Output	ALL	1	2	3	4	5	6	7	8

When a motor's output is disabled, this motor will park freely

Wiring: Fixed Quantity Control can control up to 8 motors. The diagram 12-12 is an example of controlling 4 motors at the same time.

Diagram 12-12

Image: Fixed Time circulation and Fixed quantity circulation with PID

This mode combines Fixed Time circulation and fixed quantity circulation with PID. It is to prevent motors to become rusty if they are not in use for a long period of time. If some motors are not

activated, set the fixed time circulation to run motors one by one to make sure each of them has the chance to run.

While all the motors are running and water pressure is enough, the time circulation will not be enabled. Suppose that motor1 and motor2 run to reach a balance in water pressure and when the time reaches the setting at Pr.12-02, the motor1 will be running without using mains electricity and the motor2 will decelerate to stop.

When the motor2 reaches the frequency setting at Pr.12-06 and the time setting at Pr.12-05, it will be separating from the motor drive. Then when time reaches the setting at Pr.12-03, the motor2 will run by using the mains electricity. Then when the time passes the setting at Pr.12-03, the motor3 will be enabled by the motor drive. The time sequence diagram is as shown below.

Diagram 12-13 Fixed Time Circulation and Fixed Quantity Control with PID

Ime circulation and Fixed amount control with PID

This mode combines Fixed Time circulation and fixed quantity control with PID. It is to prevent motors to become rusty if they are not in use for a long period of time. If some motors are not activated, set the fixed time circulation to run motors one by one to make sure each of them has the chance to run.

When all the motors are running and water pressure is enough, the fixed time circulation will not be enabled. Suppose that the motor1 and motor2 run to reach a balance in water pressure and when time reach the setting at Pr.12-02, the motor1 will be running without using mains electricity. Then when time reaches the setting at Pr.12-03, the motor3 will be running by using mains electricity. At this moment, the operating time of each motor will be reset, once reach the time setting at Pr.12-02 again, the motor2 will be running without using mains electricity. Then when time reaches the setting at Pr.12-03 mains electricity. Then when time reaches the setting at Pr.12-04 mains electricity. Then when time reaches the setting at Pr.12-04 mains electricity. Then when time reaches the setting at Pr.12-04 mains electricity. Then when time reaches the setting at Pr.12-04 mains electricity. Then when time reaches the setting at Pr.12-04 mains electricity. Then when time reaches the setting at Pr.12-04 mains electricity. Then when time reaches the setting at Pr.12-03 mains electricity. The time sequence diagram 12-14 is as shown below

Diagram 12-14: Enabling Fixed Time Circulation under Fixed Amount Control Balance

H - **H** Application selection

13 Application Parameters by Industry

Settings 0: Disabled 1: User Parameter 2: Compressor IM 3: Fan 4: Pump 10: Air Handling Unit, AHU \square In parameter group 13, the related parameters and settings will be brought up automatically when the application is selected. Each setting varies with different application selection, and its value will be different as well. See Chapter 10-2 for more operation details. Settings: 2: Compressor IM The following table describes the use of parameters for the relevant compressor application. Pr Explanation Settings 00-11 Control of Speed Mode 0: VF (IM V/F control) 00-16 Load Selection 0: Light load 00-17 **Carrier Frequency** Factory default setting Source of Master Frequency Command 00-20 2: External analog input (Pr.03-00) (AUTO) 00-21 Source of the Operation Command (AUTO) 1: External terminals. Keypad STOP disabled. 00-22 Stop Method 0: Ramp to stop 00-23 **Control of Motor Direction** 1: Reverse disable 01-00 Max. Operation Frequency Factory default setting 01-01 Output Frequency of Motor 1 Factory default setting 01-02 Output Voltage of Motor 1 Factory default setting 01-03 Mid-point Frequency 1 of Motor 1 Factory default setting 01-04 Mid-point Voltage 1 of Motor 1 Factory default setting 01-05 Mid-point Frequency 2 of Motor 1 Factory default setting 01-06 Mid-point Voltage 2 of Motor 1 Factory default setting 01-07 Min. Output Frequency of Motor 1 Factory default setting 01-08 Min. Output Voltage of Motor 1 Factory default setting 01-11 **Output Frequency Lower Limit** 20 (Hz) 01-12 Accel. Time 1 20 (s) 01-13 Decel Time 1 20 (s) 03-00 Analog Input Selection (AVI1) 0: No function 1: Frequency command 03-01 Analog Input Selection (ACI) (speed limit under torque control mode)

✓ This parameter can be set during operation.

Factory Setting: 0

Pr	Explanation	Settings
05-01	Full-load Current of Induction Motor 1(A)	Factory default setting
05-03	Rated Speed of Induction Motor 1 (rpm)	Factory default setting
05-04	Pole Number of Induction Motor 1	Factory default setting

3: Fan

The following table describes the use of parameters for the relevant fan application.

Pr	Explanation	Settings
00-11	Control of Speed Mode	0 (VF)
00-16	Load Selection	0: Light load
00-17	Carrier Frequency	Factory default setting
00-20	Source of Master Frequency Command (AUTO)	2: External analog input (Pr.03-00)
00-21	Source of the Operation Command (AUTO)	1: External terminals. Keypad STOP disabled.
00-22	Stop Method	1: Coast to stop
00-23	Control of Motor Direction	1: Reverse disable
00-30	Source of the Master Frequency Command (HAND)	0: Digital keypad
00-31	Source of the Operation Command (HAND)	0: Digital keypad
01-00	Max. Operation Frequency	Factory default setting
01-01	Output Frequency of Motor 1	Factory default setting
01-02	Output Voltage of Motor 1	Factory default setting
01-03	Mid-point Frequency 1 of Motor 1	Factory default setting
01-04	Mid-point Voltage 1 of Motor 1	Factory default setting
01-05	Mid-point Frequency 2 of Motor 1	Factory default setting
01-06	Mid-point Voltage 2 of Motor 1	Factory default setting
01-07	Min. Output Frequency of Motor 1	Factory default setting
01-08	Min. Output Voltage of Motor 1	Factory default setting
01-10	Output Frequency Upper Limit	50 (Hz)
01-11	Output Frequency Lower Limit	35 (Hz
01-12	Accel. Time 1	15 (s)
01-13	Decel Time 1	15 (s)
01-43	V/F Curve Selection	2: 2 nd V/F curve
02-05	Multi-function Input Command 5 (MI5)	16: Operation speed command from ACI
03-00	Analog Input Selection (AVI1)	1: Frequency command (speed limit under torque control mode)
03-01	Analog Input Selection (ACI)	1: Frequency command (speed limit under torque control mode)
03-28	AVI1 Selection	0 (0~10 V)
03-29	ACI Selection	1 (0~10 V)
03-31	AFM Output Selection	0 (0~10 V)
03-50	Analog Input Curve Selection	1: 3 point curve of AVI1

Pr	Explanation	Settings
07-06	Restart after Momentary Power Loss	 Speed search for minimum output frequency
07-11	Number of Times of Auto Restart After Fault	5
07-33	Auto restart internal of Fault	60 (s)

4: Pump

The following table describes the use of parameters for the relevant pump application.

Pr	Explanation	Settings
00-11	Control of Speed Mode	0 (VF)
00-16	Load Selection	0: Light load
00-20	Source of Master Frequency Command (AUTO)	2: External analog input (Pr.03-00)
00-21	Source of the Operation Command (AUTO)	1: External terminals. Keypad STOP disabled.
00-23	Control of Motor Direction	1: Reverse disable
01-00	Max. Operation Frequency	Factory default setting
01-01	Output Frequency of Motor 1	Factory default setting
01-02	Output Voltage of Motor 1	Factory default setting
01-03	Mid-point Frequency 1 of Motor 1	Factory default setting
01-04	Mid-point Voltage 1 of Motor 1	Factory default setting
01-05	Mid-point Frequency 2 of Motor 1	Factory default setting
01-06	Mid-point Voltage 2 of Motor 1	Factory default setting
01-07	Min. Output Frequency of Motor 1	Factory default setting
01-08	Min. Output Voltage of Motor 1	Factory default setting
01-10	Output Frequency Upper Limit	50 (Hz)
01-11	Output Frequency Lower Limit	35 (Hz)
01-12	Accel. Time 1	15 (s)
01-13	Decel Time 1	15 (s)
01-43	V/F Curve Selection	2: 2 nd V/F curve
07.06	Restart after Momentary Power Loss	2: Speed search for minimum output
07-00		frequency
07-11	Number of Times of Auto Restart After Fault	5
07-33	Auto restart internal of Fault	60 (s)

10: Air Handling Unit, AHU

The following table describes the use of parameters for the relevant AHU application.

Pr	Explanation	Settings
00-04	Multi-function Display	2
00-11	Control of Speed Mode	0 (V/F)
00-16	Load Selection	0: Light Load

Pr	Explanation	Settings
00-20	Source of Master Frequency Command (AUTO)	2/0 (External analog input)
00-21	Source of the Operation Command (AUTO)	1/0 (External terminals)
00-22	Stop Method	1 (Coast to stop)
00-23	Control of Motor Direction	1 (Disable reverse)
00-30	Source of Master Frequency Command (HAND)	0
00-31	Source of the Operation Command (HAND)	0
01-00	Max. Operation Frequency	Factory default setting
01-01	Max. Frequency	Factory default setting
01-02	Max. Voltage	Factory default setting
01-07	Min. Output Frequency of Motor	Factory default setting
01-10	Output Frequency Upper Limit	50
01-11	Output Frequency Lower Limit	35
01-34	Zero-speed Mode	2
01-43	V/F Curve Selection	2
02-05	Multi-function Input Command 5 (MI5)	16/17
02-13	Multi Output Terminal	11
02-14	Multi Output Terminal	1
03-00	Analog Input Selection (AVI1)	1
03-01	Analog Input Selection (ACI)	1
03-02	Analog Input Selection (AVI2)	1
03-28	AVI1 Selection	0
03-29	ACI Selection	1
03-20	Multi-function Output 1 (AFM1)	0
03-23	Multi-function Output 2 (AFM2)	0
03-31	AFM1 Current Selection	0/1
03-34	AFM2 Current Selection	0/1
03-50	Analog Input Curve Selection	4
07-06	Restart after Momentary Power Loss	2 (Speed tracking by minimum output frequency)
07-11	Number of Restart	5 (time)
07-33	Time of Restart	60 (s)

13-01

Application Parameter 1~99

13-99

Factory Setting: 0.00

Settings 0.00~655.35

12-2 Adjustment & Application

Standard PM Motor Adjustment Procedure

• Pr. 00-11=2 SVC

Flow chart of adjustment when starting up WITHOUT load

12 Description of Parameter Setting | CP2000

PMSVC control diagram

Adjustment procedure

1. Set up PM motor control

Pr05-33=1 or 2

- 2. Set up motor parameter according to the nameplate on the motor
 - Pr01-01 Output Frequency of Motor 1(base frequency and motor rated frequency)
 - Pr01-02 Output Voltage of Motor 1(base frequency and motor rated frequency)
 - Pr05-34 Full-load current of Permanent Magnet Motor
 - Pr05-35 Rated Power of Permanent Magnet Motor
 - Pr05-36 Rated speed of Permanent Magnet Motor
 - Pr05-37 Pole number of Permanent Magnet Motor
- 3. Execute Auto-tuning

B S - **B B** Motor Auto Tuning

Factory Setting: 0

- Settings 0: No function
 - 1: Rolling test for induction motor(IM) (Rs, Rr, Lm, Lx, no-load current) [motor running]
 - 2: Static test for induction motor [motor not running]
 - 3~12: No function
 - 13: Static test for PM motor

Set upPr05-00=13 for PM motor tuning and press Run (static-tuning). When the tuning is done, the following parameters will be obtained.

Pr05-39 Stator Resistance of PM Motor

Pr05-40 Permanent Magnet Motor Ld

Pr05-41 Permanent Magnet Motor Lq

- Pr05-43 (V/1000rpm), the Ke parameter of PM motor (this can be calculated automatically according to power, current and speed of motor).
- Pr10-52 Injection magnitude

- 4. Set up speed control mode: Pr00-10=0, Pr00-11=2 SVC.
- 5. It is suggested that cutting off the power after finishing tuning, and then re-power on.
- 6. The ration of PMSVC control mode is 1:20.
- 7. When PMSVC control mode is under 1/20 rated speed, load bearing capacity=100% motor rated torque.
- 8. PMSVC control mode is not applicable for zero speed control.
- 9. Start-up with load and forward/reverse load bearing capacity of PMSVC control mode=100% rated torque of motor.
- 10. Set up the speed estimators related parameters
 - I/F Mode Current Command / PM sensor-less low speed zone current level

Factory Setting:40

Settings 0~150% of motor's rated current

- The parameter is the current reference level of the drive in low-speed zone (low-speed zone: frequency command < Pr10-39).
- When it is stalling on heavy duty start-up or forward/reverse with load, adjust the parameter (to increase it). If inrush current too higher to cause an oc error or oc stall, then decrease it.

High-speed Estimator Bandwidth

Factory Setting:5.00

Settings 0.00~600.00Hz

- The parameter is high-speed estimator bandwidth. Adjust the parameter will influence the stability and the accuracy of speed for motor.
- If there is low frequency vibrates (the waveform is similar to sine wave) during the process, then increase the bandwidth. If there is high frequency vibrates (the waveform vibrates extremely and is like spur), then decrease the bandwidth.
- **10 34** Estimate frequency filter time

Factory Setting:1.00

Settings 0.00~655.35

- Adjust the parameter will influence the speed estimator's speed of response.
- If there is low frequency vibrates (the waveform is similar to sine wave) during the process, then increase the gain. If there is high frequency vibrates (the waveform vibrates extremely and is like spur), then decrease the gain.
- **Frequency Point when switch from I/F Mode to PM Sensorless Mode**

Factory Setting:20.00

Settings 0.00~599.00Hz

- The parameter is the switch point which is from low frequency to high frequency. It will influence high/low frequency area of speed observer.
- If the switch point is too low, motor could not generate enough back emf for the speed estimator to measure the right rotator's position and speed, and will cause stall and over current when the frequency of switch point is running.
- If the switch frequency point is too high, the active area of I/F will too wide, and then it will generate larger current to make it cannot save energy. (The reason is that if the current of Pr10-31 sets too high, and the high switch point will make the drive keeps outputting with the setting value of Pr10-31)
- Initial Angle Detection Pulse Level

Factory Setting:1.0

Settings 0.0~3.0 times of motor rated current

- \square This parameter is only available when the Pr10-53=2 or 3.
- The parameter influences the value of pulse during the angle detection. The larger the pulse is, the higher of the accuracy of rotator's position reaches. But it might cause an over current trip up more easily.
- Increase the parameter when the running direction and the command are opposite while start-up. If over current occurs in the start-up moment, then decrease the parameter.
- Zero voltage time while start up

Factory Setting: 0.000

Settings 0.000~60.000 sec.

When the motor is in static status at the startup, the accuracy to estimate angles will be

increased. In order to make the motor in "static status", the drive 3 phase U, V, W output 0V to motor to reach this goal. The Pr10-49 setting time is the length of time when three-phase output 0V.

- It is possible that even when this parameter is being applied but the motor at the installation site cannot go in to the "static status" caused by the inertia or by any external force. So, if the motor doesn't go into a completer "static status" in setting time, increase appropriately this setting value.
- This parameter is functional only when the setting of Pr07-12 Speed Search during Startup =0.
- If Pr10-49 sets too high, the start-up time will be longer obviously. If is too low, then the braking performance will be weak.

Factory Setting: 500Hz

Settings 0~1200Hz

- Parameter 10-51 is valid only when the parameter 10-53=2.
- This parameter is a High Frequency Injection Command when the motor drive is under PMSVC control mode and it doesn't often need to be adjusted. But, if a motor's rated frequency (i.e. 400Hz) is too close to the frequency setting of this parameter (i.e. 500Hz), the accuracy of angles detected will be affected. Therefore, refer to the setting of Pr01-01 before adjusting this parameter.
- If the setting value of Pr00-17 is lower than 10 times of Pr10-51, then increase the frequency of carrier wave.

✓ **IB-52** Injection Magnitude

Factory Setting: 15/30V

Settings 0.0~200.0V

- The parameter is magnitude command of high frequency injection signal when the motor drive is under PMSVC control mode.
- Increase the parameter can get more accurate estimated value of angle. But the noise of electromagnetic might be louder if the setting value is too high.
- The setting value of this parameter will be received automatically when the motor parameter is auto-tuning. And the parameter will influence the accuracy of angel's estimation.
- When the ratio of salient pole (Lq/Ld) is lower, increase Pr10-52 to make angle detection be accurate.
- Parameter 10-52 is valid only when the parameter 10-53=2.

11 - 5 3 PM Motor Initial Rotor Position Detection Method

Factory Setting: 0

- Settings 0: No function 1: DC injection 2: High frequency injection 3: Pulse injection 4~5: Reserved
- It is suggested to set as "2" if it's IPM; set as "3" if it's SPM. If there is bad effect when set as "2" or "3", then set as "1".
- 11. Parameters for speed adjustment
- ✓ 17 25 Torque Compensation Gain (V/F and SVC control mode)

Factory Setting: 0

Settings 0~10

utput ourrent during the running process. There will be less

- The parameter influences the output current during the running process. There will be less effect on the low speed area.
- Increase the setting value if the current with no-load is too high. But it might also cause the motor to vibrate. If the motor vibrates during the operation, decrease the setting value.

Chapter 13 Warning Codes

(1) Wa	D Warning O CEO1		ror signal e error code	
	3 Comm Error 1 3 Display er		rror description	
			-	
ID No.	Display on LCN	/I Keypad	Descriptions	
1	Warning CE01 Comm. Error	HAND	RS485 Modbus function code error	
2	Warning CE02 Comm. Error	HAND	RS485 Address of Modbus data error	
3	Warning CE03 Comm. Error	hand r 3	RS485 Modbus data error	
4	Warning CE04 Comm. Error	HAND	RS485 Modbus communication error	
5	Warning CE10 Comm. Erro	HAND r 10	RS485 Modbus transmission time-out	
6	Warning CP10 Keypad time	HAND	Keypad transmission time-out	
7	Warning SE1 Save Error 1	HAND	Keypad COPY error 1 Keypad simulation error, including communication delays, communication error (keypad received error FF86) and parameter value error.	
8	Warning SE2 Save Error 2	HAND	Keypad COPY error 2 Keypad simulation done, parameter write error	
9	Warning oH1	HAND	IGBT over-heating warning	

Over heat 1 warn

ID No.	Display on LCM Keypad	Descriptions
10	HAND Warning oH2 Over heat 2 warn	Capacity over-heating warning
11	Warning PID PID FBK Error	PID feedback error
12	Warning ANL Analog loss	ACI signal error When Pr03-19 is set to 1 and 2.
13	Warning uC Under Current	Low current
14	HAND Warning AUE Auto-tune error	Auto tuning error
19	HAND Warning PHL Phase Loss	Phase loss
20	HAND Warning ot1 Over Torque 1	Over torque 1
21	HAND Warning ot2 Over Torque 2	Over torque 2
22	HAND Warning oH3 Motor Over Heat	Motor over-heating
23	HAND Warning C.C cc Warn	Current control
24	HAND Warning oSL Over Slip Warn	Over slip
25	Warning tUn Auto tuning	Auto tuning processing

ID No.	Display on LCM Keypad	Descriptions
28	Warning OPHL Output PHL Warn	Output phase loss
30	Warning SE3 Copy Model Err 3	Keypad COPY error 3 Keypad copy between different power range drive
36	Warning CGdn Guarding T-out	CAN guarding time-out 1
37	HAND Warning CHbn Heartbeat T-out	CAN heartbeat time-out 2
38	Warning CSYn SYNC T-out	CAN synchrony time-out
39	Warning CbFn Can Bus Off	CAN bus off
40	Warning CIdn CAN/S Idx exceed	CAN index error
41	Warning CAdn CAN/S Addres set	CAN station address error
42	Warning CFrn CAN/S FRAM fail	CAN memory error
43	Warning CSdn SDO T-out	CAN SDO transmission time-out
44	Warning CSbn Buf Overflow	CAN SDO received register overflow
45	Warning Cbtn Boot up fault	CAN boot up error

ID No.	Display on LCM Keypad	Descriptions
46	Warning CPtn Error Protocol	CAN format error
47	HAND Warning PIra RTC Adjust	Adjust RTC
49	HAND Warning PIrt Keypad RTC TOut	Keypad RTC time out
50	HAND Warning PLod Opposite Defect	PLC download error
51	Warning PLSv Save mem defect	Save error of PLC download
52	Warning PLdA Data defect	Data error during PLC operation
53	Warning PLFn Function defect	Function code of PLC download error
54	Warning PLor Buf overflow	PLC register overflow
55	Warning PLFF Function defect	Function code of PLC operation error
56	HAND Warning PLSn Check sum error	PLC checksum error
57	HAND Warning PLEd No end command	PLC end command is missing
58	HAND Warning PLCr PLC MCR error	PLC MCR command error

ID No.	Display on LCM Keypad	Descriptions
59	Warning PLdF Download fail	PLC download fail
60	Warning PLSF Scane time fail	PLC scan time exceed
61	HAND Warning PCGd CAN/M Guard err	CAN Master guarding error
62	Warning PCbF CAN/M bus off	CAN Master bus off
63	Warning PCnL CAN/M Node Lack	CAN Master node error
64	Warning PCCt CAN/M Cycle Time	CAN/M cycle time-out
65	HAND Warning PCSF CAN/M SDO over	CAN/M SDOover
66	HAND Warning PCSd CAN/M Sdo Tout	CAN/M SDO time-out
67	HAND Warning PCAd CAN/M Addres set	CAN/M station address error
68	HAND Warning PCTo CAN/MT-Out	PLC/CAN Master Slave communication time out
70	Warning ECid ExCom ID failed	Duplicate MAC ID error Node address setting error
71	HAND Warning ECLv ExCom pwr loss	Low voltage of communication card

ID No.	Display on LCM Keypad	Descriptions
72	Warning ECtt ExCom Test Mode	Communication card in test mode
73	Warning ECbF ExCom Bus off	DeviceNet bus-off
74	Warning ECnP ExCom No power	DeviceNet no power
75	Warning ECFF ExCom Facty def	Factory default setting error
76	Warning ECiF ExCom Inner err	Serious internal error
77	HAND Warning ECio ExCom IONet brk	IO connection break off
78	Warning ECPP ExCom Pr data	Profibus parameter data error
79	Warning ECPi ExCom Conf data	Profibus configuration data error
80	Warning ECEF ExCom Link fail	Ethernet Link fail
81	Warning ECto ExCom Inr T-out	Communication time-out for communication card and drive
82	Warning ECCS ExCom Inr CRC	Check sum error for Communication card and drive
83	Warning ECrF ExCom Rtn def	Communication card returns to default setting

ID No.	Display on LCM Keypad	Descriptions
84	Warning ECo0 ExCom MTCP over	Modbus TCP exceed maximum communication value
85	Warning ECo1 ExCom EIP over	EtherNet/IP exceed maximum communication value
86	Warning ECiP ExCom IP fail	IP fail
87	Warning EC3F ExCom Mail fail	Mail fail
88	Warning Ecby ExCom Busy	Communication card busy
90	HAND Warning CPLP CopyPLCPassWd	Copy PLC password error
91	Warning CPL0 CopyPLCModeRd	Copy PLC Read mode error
92	Warning CPL1 CopyPLCModeWt	Copy PLC Write mode error
93	HAND Warning CPLv CopyPLCVersion	Copy PLC Version error
94	Warning CPLS CopyPLCSize	Copy PLC Capacity size error
95	Warning CPLF CopyPLCFunc	Copy PLC: Disable PLC functions to copy
96	Warning CPLt CopyPLCTimeOut	Copy PLC time out

Chapter 13 Warning Codes | CP2000

ID No.	Display on LCM Keypad	Descriptions
101	HAND Warning ictn InrCOM Time Out	Internal communication is off

Chapter 14 Fault Codes and Descriptions

	HAND	
ി	Fault	U Display error signal
Y	radit	2 Abbreviate error code
2	ocA	The code is displayed as shown on KPC-CE01.
3	Oc at accel	3 Display error description

* Refer to setting of Pr06-17~Pr06~22.

ID*	Fault Name	Fault Descriptions	Corrective Actions
1	Fault ocA Oc at accel	Over-current during acceleration (Output current exceeds 2.4 rated current during acceleration.)	 Short-circuit at motor output: Check for possible poor insulation at the output. Acceleration Time too short: Increase the Acceleration Time. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
2	Fault ocd Oc at decel	Over-current during deceleration (Output current exceeds 2.4 rated current during deceleration.)	 Short-circuit at motor output: Check for possible poor insulation at the output. Deceleration Time too short: Increase the Deceleration Time. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
3	Fault ocn Oc at normal SPD	Over-current during steady state operation (Output current exceeds 2.4 rated current during constant speed.)	 Short-circuit at motor output: Check for possible poor insulation at the output. Deceleration Time too short: Decrease the Deceleration Time AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
4	Fault GFF Ground fault	Ground fault	 When (one of) the output terminal(s) is grounded, short circuit current is more than 50% of AC motor drive rated current, the AC motor drive power module may be damaged. NOTE: The short circuit protection is provided for AC motor drive protection, not for protecting the user. Check the wiring connections between the AC motor drive and motor for possible short circuits, also to ground. Check whether the IGBT power module is damaged. Check for possible poor insulation at the output.
5	Fault occ Short Circuit	Short-circuit is detected between upper bridge and lower bridge of the IGBT module	Return to the factory

ID*	Fault Name	Fault Descriptions	Corrective Actions
6	HAND Fault ocS Oc at stop	Hardware failure in current detection	Return to the factory
7	Fault ovA Ov at accel	DC BUS over-voltage during acceleration (230V: 410VDC; 460V: 820VDC; 575V: 1116VDC; 690V: 1318VDC)	 Check if the input voltage falls within the rated AC motor drive input voltage range. Check for possible voltage transients. If DC BUS over-voltage due to regenerative voltage, please increase the acceleration time or add an optional brake resistor.
8	Fault ovd Ov at decel	DC BUS over-voltage during deceleration (230V: 410VDC; 460V: 820VDC; 575V:1116VDC; 690V: 1318VDC)	 Check if the input voltage falls within the rated AC motor drive input voltage range. Check for possible voltage transients. If DC BUS over-voltage due to regenerative voltage, please increase the Deceleration Time or add an optional brake resistor.
9	Fault ovn Ov at normal SPD	DC BUS over-voltage at constant speed (230V: 410VDC; 460V: 820VDC; 575V: 1116VDC; 690V: 1318VDC)	 Check if the input voltage falls within the rated AC motor drive input voltage range. Check for possible voltage transients. If DC BUS over-voltage due to regenerative voltage, please increase the Deceleration Time or add an optional brake resistor.
10	Fault ovS Ov at stop	Hardware failure in voltage detection	 Check if the input voltage falls within the rated AC motor drive input voltage range. Check for possible voltage transients.
11	Fault LvA Lv at accel	DC BUS voltage is less than Pr.06-00 during acceleration	 Check if the input voltage is normal Check for possible sudden load Adjust setting of Pr. 06-00
12	HAND Fault Lvd Lv at decel	DC BUS voltage is less than Pr.06-00 during deceleration	 Check if the input voltage is normal Check for possible sudden load Adjust setting of Pr. 06-00
13	Fault Lvn Lv at normal SPD	DC BUS voltage is less than Pr.06-00 in constant speed	 Check if the input voltage is normal Check for possible sudden load Adjust setting of Pr. 06-00
14	Fault LvS Lv at stop	DC BUS voltage is less than Pr.06-00 at stop	 Check if the input voltage is normal Check for possible sudden load Adjust setting of Pr. 06-00

ID*	Fault Name	Fault Descriptions	Corrective Actions
15	Fault OrP Phase lacked	Phase Loss	Check Power Source Input if all 3 input phases are connected without loose contacts. For models 40hp and above, please check if the fuse for the AC input circuit is blown.
16	Fault oH1 IGBT over heat	IGBT overheating IGBT temperature exceeds protection level	 Ensure that the ambient temperature falls within the specified temperature range. Make sure that the ventilation holes are not obstructed. Remove any foreign objects from the heatsinks and check for possible dirty heat sink fans. Check the fan and clean it. Provide enough spacing for adequate ventilation.
17	Fault oH2 Heat Sink oH	Heatsink overheating Capacitance temperature exceeds cause heatsink overheating.	 Ensure that the ambient temperature falls within the specified temperature range. Make sure heat sink is not obstructed. Check if the fan is operating Check if there is enough ventilation clearance for AC motor drive.
18	HAND Fault tH1o Thermo1open	IGBT Hardware Error	Return to the factory
19	HAND Fault tH2o Thermo 2 open	Capacitor Hardware Error	Return to the factory
21	HAND Fault OVerload	Overload The AC motor drive detects excessive drive output current.	 Check if the motor is overloaded. Take the next higher power AC motor drive model.
22	Fault EoL1 Thermal relay 1	Electronics thermal relay 1 protection	 Check the setting of electronics thermal relay (Pr.06-13~06-14) Take the next higher power AC motor drive model
23	Fault EoL2 Thermal relay 2	Electronics thermal relay 2 protection	 Check the setting of electronics thermal relay (Pr.06-27~06-28) Take the next higher power AC motor drive model

Chapter 14 Fault Codes and Descriptions | CP2000

ID*	Fault Name	Fault Descriptions	Corrective Actions		
24	HAND Fault oH3 Motor over heat	Motor overheating The AC motor drive detecting internal temperature exceeds the setting of Pr.06-30 (PTC level) or Pr.06-57 (PT100 level 2).	 Make sure that the motor is not obstructed. Ensure that the ambient temperature falls within the specified temperature range. Change to a higher power motor. 		
26	Fault ot1 Over torque 1	These two fault codes will be displayed when output current exceeds the over-torque detection level (Pr.06-07 or Pr.06-10) and exceeds	 Check whether the motor is overloaded. Check whether motor rated current setting (Pr.05-01) is suitable 		
27	Fault ot2 Over torque 2	over-torque detection (Pr.06-08 or Pr.06-11) and it is set to 2 or 4 in Pr.06-06 or Pr.06-09.	3. Take the next higher power AC motor drive model.		
28	HAND Fault Under torque	Low current detection	Check Pr.06-71, Pr.06-72, Pr.06-73.		
30	Fault cF1 EEPROM write err	Internal EEPROM can not be programmed.	 Press "RESET" key to the factory setting Return to the factory. 		
31	Fault cF2 EEPROM read err	Internal EEPROM can not be read.	 Press "RESET" key to the factory setting Return to the factory. 		
32	Fault SHWE Safety HW err	Safety hardware error			
33	HAND Fault cd1 las sensor err	U-phase error	Reboots the power. If fault code is still displayed on the keypad, please return to the factory		
34	Hand Fault cd2 Ibs sensor err	V-phase error	Reboots the power. If fault code is still displayed on the keypad, please return to the factory		
35	Fault cd3 lcs sensor err	W-phase error	Reboots the power. If fault code is still displayed on the keypad, please return to the factory		

ID*	Fault Name	Fault Descriptions	Corrective Actions	
36	HAND Fault Hd0 cc HW error	CC (current clamp)	Reboots the power. If fault code is still displayed on the keypad, please return to the factory	
37	Hand Fault Hd1 Oc HW error	OC hardware error	Reboots the power. If fault code is still displayed on the keypad, please return to the factory	
38	HAND Fault Hd2 Ov HW error	OV hardware error	Reboots the power. If fault code is still displayed on the keypad, please return to the factory	
39	Fault Hd3 occ HW error	Occ hardware error	Reboots the power. If fault code is still displayed on the keypad, please return to the factory	
40	Fault AUE Auto tuning err	Auto tuning error	 Check cabling between drive and motor Check motor capacity and parameter setting Try again. 	
41	Fault AFE PID Fbk error	PID loss (ACI)	 Check the wiring of the PID feedback Check the PID parameters settings 	
48	Fault ACE ACI loss	ACI loss	 Check the ACI wiring Check if the ACI signal is less than 4mA 	
49	HAND Fault EF External fault	External Fault	 Input EF (N.O.) on external terminal is closed to GND. Output U, V, W will be turned off. Give RESET command after fault has been cleared. 	
50	Fault EF1 Emergency stop	Emergency stop	 When the multi-function input terminals MI1 to MI6 are set to emergency stop, the AC motor drive stops output U, V, W and the motor coasts to stop. Press RESET after fault has been cleared. 	
51	Fault bb Base block	External Base Block	 When the external input terminal (B.B) is active, the AC motor drive output will be turned off. Deactivate the external input terminal (B.B) to operate the AC motor drive again. 	

Chapter 14 Fault Codes and Descriptions | CP2000

ID*	Fault Name	Fault Descriptions	Corrective Actions	
52	HAND Fault Pcod Password error	Password is locked.	Keypad will be locked. Turn the power ON after power OFF to re-enter the correct password. See Pr.00-07 and 00-08. Power off and restart the driver before entering the correct password.	
53	Fault ccod SW Code Error	Software version error		
54	HAND Fault CE1 PC err command	Illegal function code	Check if the function code is correct (function code must be 03, 06, 10, 63)	
55	Fault CE2 PC err address	Illegal data address (00H to 254H)	Check if the communication address is correct	
56	Fault CE3 PC err data	Illegal data value	Check if the data value exceeds max./min. value	
57	Fault CE4 PC slave fault	Data is written to read-only address	Check if the communication address is correct	
58	Fault CE10 PC time out	Modbus transmission time-out		
59	HAND Fault CP10 PU time out	Keypad transmission time-out		
60	Fault bF Braking fault	Brake resistor fault	If the fault code is still displayed on the keypad after pressing "RESET" key, please return to the factory.	
61	Fault ydc Y-delta connect	Y-connection/Δ-connectio n switch error	 Check the wiring of the Y-connection/Δ-connection Check the parameters settings 	

ID*	Fault Name	Fault Descriptions	Corrective Actions	
62	HAND Fault dEb Dec. Energy back	When Pr.07-13 is not set to 0 and momentary power off or power cut, it will display dEb during accel./decel. stop.	 Set Pr.07-13 to 0 Check if input power is stable 	
63	HAND Fault OVer slip error	It will be displayed when slip exceeds Pr.07-29 setting and time exceeds Pr.07-30 setting.	 Check if motor parameter is correct (please decrease the load if overload Check the settings of Pr.07-29 and Pr.07-30 	
64	Fault ryF MC Fault	Electric valve switch error v (This warning is for frame E Do not disconnect RST whe	vhen executing Soft Start. E and higher frame of AC drives) en drive is still operating.	
72	Fault STL1 STO Loss 1	STO1~SCM1 internal hardw	vare detect error	
73	Fault S1 S1-emergy stop	Emergency stop for external safety		
74	HAND Fault Fire On Fire	Fire mode		
75	лито Fault Brk EXT-Brake Error	External Brake Error	Verify M/I terminal signal	
76	Fault STO STO	Safe Torque Off function active		
77	Fault STL2 STO Loss 2	STO2~SCM2 internal hardware detect error		
78	Fault STL3 STO Loss 3	STO1~SCM1 and STO2~SCM2 internal hardware detect error		

Chapter 14 Fault Codes and Descriptions | CP2000

ID*	Fault Name	Fault Descriptions Corrective Actions
79	Hand Fault Uoc U phase oc	U phase short circuit
80	Fault Voc V phase oc	V phase short circuit
81	Hand Fault Woc W phase oc	W phase short circuit
82	Hand Fault OPHL U phase lacked	Output phase loss (Phase U)
83	HAND Fault OPHL V phase lacked	Output phase loss (Phase V)
84	HAND Fault OPHL W phase lacked	Output phase loss (Phase W)
87	алто Fault oL3 Derating Error	OL3 Derating error
90	Fault Fstp For ce Stop	Internal PLC forced to stop Verify the setting of Pr.00-32
99	Fault TRAP CPU Trap Error	CPU trap error
101	Fault CGdE Guarding T-out	CANopen guarding error

ID*	Fault Name	Fault Descriptions	Corrective Actions
102	Fault CHbE Heartbeat T-out	CANopen heartbeat error	
103	Fault CSYE SYNCT-out	CANopen synchronous err	or
104	Fault CbFE Can bus off	CANopen bus off error	
105	HAND Fault CIdE Can bus Index Err	CANopen index error	
106	Fault CAdE Can bus Add. Err	CANopen station address e	rror
107	Fault CFrE Can bus off	CANopen memory error	
111	Fault ictE InrCom Time Out	Internal communication tim	e-out

[This page intentionally left blank]

Chapter 15 CANopen Overview

- 15-1 CANopen Overview
- 15-2 Wiring for CANopen
- 15-3 CANopen Communication Interface Description
- 15-4 CANopen Supporting Index
- 15-5 CANopen Fault Codes
- 15-6 CANopen LED Function

The built-in CANopen function is a kind of remote control. Master can control the AC motor drive by using CANopen protocol. CANopen is a CAN-based higher layer protocol. It provides standardized communication objects, including real-time data (Process Data Objects, PDO), configuration data (Service Data Objects, SDO), and special functions (Time Stamp, Sync message, and Emergency message). And it also has network management data, including Boot-up message, NMT message, and Error Control message. Refer to CiA website http://www.can-cia.org/ for details. The content of this instruction sheet may be revised without prior notice. Please consult our distributors or download the most updated version at http://www.delta.com.tw/industrialautomation

Delta CANopen supporting functions:

- Support CAN2.0A Protocol;
- Support CANopen DS301 V4.02;
- Support DSP-402 V2.0.

Delta CANopen supporting services:

- PDO (Process Data Objects): PDO1~ PDO4
- SDO (Service Data Object):

Initiate SDO Download; Initiate SDO Upload; Abort SDO;

SDO message can be used to configure the slave node and access the Object Dictionary in every node.

SOP (Special Object Protocol):

Support default COB-ID in Predefined Master/Slave Connection Set in DS301 V4.02; Support SYNC service; Support Emergency service.

■ NMT (Network Management):

Support NMT module control; Support NMT Error control;

Support Boot-up.

Delta CANopen not supporting service:

■ Time Stamp service

15-1 CANopen Overview CANopen Protocol

CANopen is a CAN-based higher layer protocol, and was designed for motion-oriented machine control networks, such as handling systems. Version 4.02 of CANopen (CiA DS301) is standardized as EN50325-4. The CANopen specifications cover application layer and communication profile (CiA DS301), as well as a framework for programmable devices (CiA 302), recommendations for cables and connectors (CiA 303-1) and SI units and prefix representations (CiA 303-2).

PIN	Signal	Description	
1	CAN_H	CAN_H bus line (dominant high)	
2	CAN_L	CAN_L bus line (dominant low)	
3	CAN_GND	Ground / 0V /V-	
6	CAN_GND	Ground / 0V /V-	

CANopen Communication Protocol

It has services as follows:

- NMT (Network Management Object)
- SDO (Service Data Objects)
- PDO (Process Data Object)
- EMCY (Emergency Object)

NMT (Network Management Object)

The Network Management (NMT) follows a Master/Slave structure for executing NMT service. Only one NMT master is in a network, and other nodes are regarded as slaves. All CANopen nodes have a present NMT state, and NMT master can control the state of the slave nodes. The state diagram of a node is shown as follows:

(1) After power is applied, it is auto in initialization state

- (2) Enter pre-operational state automatically
- (3) (6) Start remote node

(4) (7) Enter pre-operational state

(5) (8) Stop remote node

(9) (10) (11) Reset node

(12) (13) (14) Reset communication

(15) Enter reset application state automatically

(16) Enter reset communication state automatically

	Initializing	Pre-Operational	Operational	Stopped
PDO			0	
SDO		0	0	
SYNC		0	0	
Time Stamp		0	0	
EMCY		0	0	
Boot-up	0			
NMT		0	0	0

- A: NMT
- B: Node Guard
- C: SDO
- D: Emergency E: PDO
- F: Boot-up

SDO (Service Data Objects)

SDO is used to access the Object Dictionary in every CANopen node by Client/Server model. One SDO has two COB-ID (request SDO and response SDO) to upload or download data between two nodes. No data limit for SDOs to transfer data. But it needs to transfer by segment when data exceeds 4 bytes with an end signal in the last segment.

The Object Dictionary (OD) is a group of objects in CANopen node. Every node has an OD in the system, and OD contains all parameters describing the device and its network behavior. The access path of OD is the index and sub-index, each object has a unique index in OD, and has sub-index if necessary. The request and response frame structure of SDO communication is shown as follows:

PDO (Process Data Object)

PDO communication can be described by the producer/consumer model. Each node of the network will listen to the messages of the transmission node and distinguish if the message has to be processed or not after receiving the message. PDO can be transmitted from one device to one another device or to many other devices. Every PDO has two PDO services: a TxPDO and a RxPDO. PDOs are transmitted in a non-confirmed mode.

PDO Transmission type is defined in the PDO communication parameter index (1400h for the 1st RxPDO or 1800h for the 1st TxPDO), and all transmission types are listed in the following table:

Type Number	PDO					
Type Number	Cyclic	Acyclic	Synchronous	Asynchronous	RTR only	
0		0	0			
1-240	0		0			
241-251		Reserved				
252			0		0	
253				0	0	
254				0		
255				0		

Type number 1-240 indicates the number of SYNC message between two PDO transmissions. Type number 252 indicates the data is updated (but not sent) immediately after receiving SYNC.

Type number 253 indicates the data is updated immediately after receiving RTR.

Type number 254: Delta CANopen doesn't support this transmission format.

Type number 255 indicates the data is asynchronous transmission.

All PDO transmission data must be mapped to index via Object Dictionary.

EMCY (Emergency Object)

When errors occurred inside the hardware, an emergency object will be triggered. An emergency object will only be sent when an error occurs. As long as there is nothing wrong with the hardware, there will be no emergency object to be served as a warning of an error message.

15-2 Wiring for CANopen

An external adapter card: EMC-COP01 is used for CANopen wiring to connect CANopen to VFD CP2000. The link is enabled by using RJ45 cable. The two farthest ends must be terminated with 120Ω terminating resistors.

15-3 CANopen Communication Interface Description

15-3-1 CANopen Control Mode Selection

There are two control modes for CANopen; Pr.09-40 set to 1 is the factory setting mode DS402 standard and Pr.09-40 set to 0 is Delta's standard setting mode.

There are also two control modes according to Delta's standard. One is the old control mode (Pr09-30=0), which can only control the motor drive under frequency control. Another one is a new standard (Pr09-30=1) control mode, that allows the motor drive to be controlled under all sort of mode. Currently. Currently, CP2000 only supports speed mode.

The definition of relating control mode is:

CANlenen Centrel	Control Mode		
Mode Selection	Speed		
	Index	Description	
DS402 standard	6042-00	Target rotating speed (RPM)	
Pr09-40=1			
Delta Standard (Old definition) Pr09-40=0 Pr09-30=0	2020-02	Target rotating speed (Hz)	
Delta Standard (New definition)	2060-03	Target rotating speed (Hz)	
Pr09-40=0, Pr09-30=1	2060-04	Torque Limit (%)	

CANopen Control Mode	Operation Control		
Selection	Index	Description	
DS402 standard	6040-00	Operation Command	
Pr. 09-40=1			
Delta Standard (Old definition) P09-40=0, P09-30=0	2020-01	Operation Command	
Delta Standard (New definition)	2060-01	Operation Command	
Pr09-40=0, Pr09-30=1			

CANopen Control Mode	Other	
Selection	Index	Description
DS402 standard	605A-00	Quick stop processing method
Pr. 09-40=1	605C-00	Disable operation processing method
Delta Standard (Old definition) Pr09-40=1, Pr09-30=0		
Delta Standard (New definition)		
Pr09-40=0, Pr09-30=1		

However, some index can be used regardless of DS402 or Delta's standard.

For example:

- 1. Index that is defined as RO attributes.
- 2. Index corresponds to parameters such as (2000 ~200B-XX)
- 3. Accelerating/Decelerating Index: 604F 6050
- 4. Control mode: Index : 6060

15-3-2 DS402 Standard Control Mode

15-3-2-1 Related set up of AC motor drive (by following DS402 standard)

If you want to use DS402 standard to control the motor drive, please follow the steps below:

- 1. Wiring for hardware (refer to chapter 15-2 Wiring for CANopen)
- 2. Operation source setting: set Pr.00-21 = 3 for CANopen communication card control.
- 3. Frequency source setting: set Pr.00.20 = 6. (Choose source of frequency command from CANopen setting.)
- 4. Set DS402 as control mode: Pr09-40=1
- CANopen station setting: set Pr.09-36 (Range of setting is 1~127. When Pr.09-36=0, CANopen slave function is disabled.) (Note: If error occurs (CAdE or CANopen memory error) as station setting is completed, press Pr.00-02=7 for reset.)
- CANopen baud rate setting: set Pr.09-37 (CANBUS Baud Rate: 1Mbps(0), 500Kbps(1), 250Kbps (2), 125Kbps (3), 100Kbps (4) and 50Kbps (5))
- Set multiple input functions to Quick Stop (it can also enable or disable, default setting is disabled). If it is necessary to enable the function, set MI terminal to 53 in one of the following parameter: Pr.02.01~Pr.02.08 or Pr.02.26~Pr.02.31. (Note: This function is available in DS402 only.)

15-3-2-2 The status of the motor drive (by following DS402 standard)

According to the DS402 definition, the motor drive is divided into 3 blocks and 9 statuses as described below.

3 blocks

Power Disable: Without PWM output Power Enable: With PWM output Fault: One or more than one error has occurred.

9 statuses

Start: Power On

Not ready to switch on: The motor drive is initiating.

Switch On Disable: When the motor drive finishes the initiation, it will be at this mode.

Ready to switch on: Warming up before running.

Switch On: The motor drive has the PWM output now, but the reference command is not effective.

Operate Enable: Able to control normally.

Quick Stop Active: When there is a Quick Stop request, you have to stop running the motor drive.

Fault Reaction Active: The motor drive detects conditions which might trigger error(s).

Fault: One or more than one errors has occurred.

Therefore, when the motor drive is turned on and initiated, it will remain at Ready to Switch on status. To control the operation of the motor drive, you need to change this status to

Operate Enable status. The way to change it is to command the control word's bit0 ~ bit3 and bit7 of the Index 6040H and to pair with Index Status Word (Status Word 0X6041). The control steps and index definition are described as below:

Index 6040

15~9	8	7	6~4	3	2	1	0
Reserved	Halt	Fault Reset	Operation	Enable operation	Quick Stop	Enable Voltage	Switch On

15~14	13~12	11	10	9	8	7	6		5	4	3	2	1	0
Reserved	Operation	Internal limit active	Target reached	Remote	Reserved	Warning	Switch on disabled	Qı st	uick top	Voltage enabled	Fault	Operation enable	Switch on	Ready to switch on
											1			
	Pow	er									+		_	
	Disa	ble		Sta	art				Fa	ult Rea	action	Active		
			·							X0	XX11	11		
		-		↓										
			Not R	eady to	o Switc	h On					+			
				X0XX	0000						Fault			
		L								X0	XX10	00		
									-		≜ X	XXXXX	X	
			Sw	itch Or	n Disab	le 🗲		-						
	0XX	XXX0X	*	X1XX	0000	-								
		Disabl	0XXXX e QSto	110 and p=1	0XXX or 0XXX or Disab	XX0X X01X le QSto	op=0							

Set command 6040 =0xE, then set another command 6040 =0xF. Then the motor drive can be switched to Operation Enable. The Index 605A decides the dashed line of Operation Enable when the control mode changes from Quick Stop Active. (When the setting value is $1\sim3$, this dashed line is active. But when the setting value of 605A is not $1\sim3$, once the motor drive is switched to Quick Stop Active, it will not be able to switch back to Operation Enable.)

605Ah 0 Quick stop option code 2 RW S16 No ⁰ : disable drive function 1:slow down on slow down ramp 2: slow down on quick stop ramp 3: slow down on the current limit 5 slow down on slow down ramp and stay in QUICK STOP 6 slow down on quick stop ramp 	Index	Sub	Definition	Factory Setting	R/W	Size	Unit	PDO Map	Mode	note
605Ah 0 Quick stop option code 2 RW S16 No ^{1:slow down on slow down ramp ^{2: slow down on quick stop ramp ^{3: slow down on the current limit ⁵ slow down on slow down ramp ^{and stay in QUICK STOP} ⁶ slow down on quick stop ramp ⁶}}}										0: disable drive function
605Ah 0 Quick stop option code 2 RW S16 No 2: slow down on quick stop ramp 3: slow down on the current limit 5 slow down on slow down ramp and stay in QUICK STOP 6 slow down on quick stop ramp								No		1:slow down on slow down ramp
605Ah 0 Quick stop option code 2 RW S16 No 3: slow down on the current limit 5 slow down on slow down ramp and stay in QUICK STOP 6 slow down on quick stop ramp										2: slow down on quick stop ramp
605Ah 0 Quick stop option code 2 RW S16 No 5 slow down on slow down ramp and stay in QUICK STOP 6 slow down on quick stop ramp			Quick stop option code	2	RW	S16				3: slow down on the current limit
6 slow down on quick stop ramp	605Ah	0								5 slow down on slow down ramp
6 slow down on quick stop ramp										
										6 slow down on quick stop ramp
										7 slow down on the current limit
7 slow down on the current limit										and stay in Quick stop

Besides, when the control section switches from Power Enable to Power Disable, use 605C to define parking method.

Index	Sub	Definition	Factory Setting	R/W	Size	Unit	PDO Map	Mode	note
605Ch	0	Disable operation option code	1	RW	S16		No		0: Disable drive function 1: Slow down with slow down ramp; disable of the drive function

15-3-2-3 Various mode control method (by following DS402 standard)

CP2000 only supports speed control at present which is described as below:

Speed mode

- 1. Let AC Motor Drive be at the speed control mode: Set Index6060 to 2.
- 2. Switch to Operation Enable mode: Set 6040=0xE, then set 6040 = 0xF.
- 3. To set target frequency: Set target frequency of 6042, since the operation unit of 6042 is rpm, there is a transformation:

$$n = f \times \frac{120}{p}$$
n: rotation speed (rpm) (rounds/minute)
P: motor's pole number (Pole)
f: rotation frequency (Hz)

For example:

Set 6042H = 1500 (rpm), if the motor drive's pole number is 4 (Pr05-04 or Pr05-16), then the motor drive's operation frequency is 1500(120/4)=50Hz.

Besides, the 6042 is defined as a signed operation. The plus or minus sign means to rotate clockwise or counter clockwise

4. To set acceleration and deceleration: Use 604F(Acceleration) and 6050(Deceleration).

5. Trigger an ACK signal: In the speed control mode, the bit 6~4 of Index 6040 needs to be controlled. It is defined as below:

		Index 6040		SUM
Speed mode	Bit 6	Bit 5	Bit 4	30101
	1	0	1	Locked at the current signal.
(Index 0000-2)	1	1	1	Run to reach targeting signal.
		Other		Decelerate to 0Hz.

NOTE 01: To know the current rotation speed, read 6043. (Unit: rpm)

NOTE 02: To know if the rotation speed can reach the targeting value; read bit 10 of 6041. (0: Not reached; 1: Reached)

15-3-3 By using Delta Standard (Old definition, only support speed mode)

15-3-3-1 Various mode control method (by following DS402 standard)

If you want to use DS402 standard to control the motor drive, please follow the steps below:

- 1. Wiring for hardware (Refer to chapter 15-2 Wiring for CANopen)
- 2. Operation source setting: set Pr.00-21 to 3 for CANopen communication card control.
- 3. Frequency source setting: set Pr.00.20 to 6. (Choose source of frequency command from CANopen setting.)
- 4. Set Delta Standard (Old definition, only support speed mode) as control mode: Pr. 09-40 = 0 and 09-30 = 0.
- CANopen station setting: set Pr.09-36 (Range of setting is 1~127. When Pr.09-36=0, CANopen slave function is disabled.) (Note: If error occurs (CAdE or CANopen memory error) as station setting is completed, press Pr.00-02=7 for reset.)
- CANopen baud rate setting: set Pr.09-37 (CANBUS Baud Rate: 1Mbps(0), 500Kbps(1), 250Kbps(2), 125Kbps(3), 100Kbps(4) and 50Kbps(5))

15-3-3-2 By speed mode

- 1. Set the target frequency: Set 2020-02, the unit is Hz, with a number of 2 decimal places. For example 1000 is 10.00.
- 2. Operation control: Set 2020-01 = 0002H for Running, and set 2020-01 = 0001H for Stopping.

15-3-4 By using Delta Standard (New definition)

15-3-4-1 Related set up of AC motor drive (Delta New Standard)

If you want to use DS402 standard to control the motor drive, please follow the steps below:

- 1. Wiring for hardware (Refer to chapter 15-2 Wiring for CANopen)
- 2. Operation source setting: set Pr.00-21 to 3 for CANopen communication card control.
- 3. Frequency source setting: set Pr.00.20 to 6. (Choose source of frequency command from CANopen setting.)
- 4. Set Delta Standard (Old definition, only support speed mode) as control mode: Pr. 09-40 = 0 and 09-30 = 1.
- CANopen station setting: set Pr.09-36 (Range of setting is 1~127. When Pr.09-36=0, CANopen slave function is disabled.) (Note: If error arise (CAdE or CANopen memory error) as station setting is completed, press Pr.00-02=7 for reset.)
- 6. CANopen baud rate setting: set Pr.09.37 (CANBUS Baud Rate: 1Mbps(0), 500bpsK(1), 250Kbps(2), 125Kbps(3), 100Kbps(4) and 50Kbps(5)).

15-3-4-2 Various mode control method (Delta New Standard)

Speed Mode

- 1. Let AC Motor Drive be at the speed control mode: Set Index6060 = 2.
- 2. Set the target frequency: set 2060-03, unit is Hz, with a number of 2 decimal places. For example, 1000 is 10.00Hz.
- 3. Operation control: set 2060-01 = 008H for Server on, and set 2060-01 = 0081H for Running.

NOTE01: To know the current position, read 2061-05.

NOTE02: To know if reaching the target position, read bit 0 of 2061 (0: Not reached, 1: Reached).
15-3-5 DI/ DO/ AI/ AO are controlled via CANopen

To control the DO AO of the motor drive through CANopen, follow the steps below:

- 1. To set the DO to be controlled, define this DO to be controlled by CANopen. For example, set Pr02-14=50 to control RY2.
- 2. To set the AO to be controlled, define this AO to be controlled by CANopen. For example, set Pr03-23=20 to control AFM2.
- To control the mapping index of CANopen. If you want to control DO, then you will need to control Index2026-41. If you want to control AO, then you will need to control 2026-AX. If you want to set RY2 as ON, set the bit 1 of Index 2026-41 =1, then RY2 will output 1. If you want to control AFM2 output = 50.00%, then you will need to set Index 2026-A2 =5000, then AFM2 will output 50%.
 Mapping table of CANopen DI DO AI AO:

DI:			
Terminal	Related Parameters	R/W	Mapping Index
FWD	==	RO	2026-01 bit 0
REV	==	RO	2026-01 bit 1
MI 1	==	RO	2026-01 bit 2
MI 2	==	RO	2026-01 bit 3
MI 3	==	RO	2026-01 bit 4
MI 4	==	RO	2026-01 bit 5
MI 5	==	RO	2026-01 bit 6
MI 6	==	RO	2026-01 bit 7
MI 7	==	RO	2026-01 bit 8
MI 8	==	RO	2026-01 bit 9
MI 10	==	RO	2026-01 bit 10
MI 11	==	RO	2026-01 bit 11
MI 12	==	RO	2026-01 bit 12
MI 13	==	RO	2026-01 bit 13
MI 14	==	RO	2026-01 bit 14
MI 15	==	RO	2026-01 bit 15

DO :

Terminal	Related Parameters	R/W	Mapping Index
RY1	P2-13 = 50	RW	2026-41 bit 0
RY2	P2-14 = 50	RW	2026-41 bit 1
RY3	P2-15 = 50	RW	2026-41 bit 2
MO1	P2-16 = 50	RW	2026-41 bit 3
MO2	P2-17 = 50	RW	2026-41 bit 4
MO3	P2-18 = 50	RW	2026-41 bit 5
MO4	P2-19 = 50	RW	2026-41 bit 6
MO5	P2-20 = 50	RW	2026-41 bit 7
MO6	P2-21 = 50	RW	2026-41 bit 8
MO7	P2-22 = 50	RW	2026-41 bit 9
MO8	P2-23 = 50	RW	2026-41 bit 10

AI :

Terminal	Related Parameters	R/W	Mapping Index
AVI1	==	RO	Value of 2026-61
ACI	==	RO	Value of 2026-62
AVI2	==	RO	Value of 2026-63

AO :

Terminal	Related Parameters	R/W	Mapping Index
AFM1	P3-20 = 20	RW	Value of 2026-A1
AFM2	P3-23 = 20	RW	Value of 2026-A2

15-4 CANopen Supporting Index

CP2000 Index:

Parameter index corresponds to each other as following:

Index sub-Index

2000H + Group member+1

For example:

Pr.10.15 (Encoder Slip Error Treatment)

 Group
 member

 $10(0\overline{A}H)$ 15(0FH)

 Index = 2000H + 0AH = 200A

Sub Index = 0FH + 1H = 10H

CP2000 Control Index:

Delta Standard Mode (Old definition)

Index	Sub	Definition	Factory Setting	R/W	Size		Note
	0	Number	3	R	U8		
						Bit 0~1	00B:disable
							01B:stop
							10B:disable
							11B: JOG Enable
						Bit2~3	Reserved
						Bit4~5	00B:disable
							01B: Direction forward
					U16		10B: Reverse
							11B: Switch Direction
						Bit6~7	00B: 1 st step Accel. /Decel.
							01B: 2 nd step Accel. /Decel.
							10B: 3 rd step Accel. /Decel.
		Control word	0	RW			11B: 4 th step Accel. /Decel.
						Bit8~15	0000B: Master speed
	1						0001B: 1 st step speed
							0010B: 2 nd step speed
2020H							0011B: 3 rd step speed
	'		Ŭ				0100B: 4 th step speed
							0101B: 5 th step speed
							0110B: 6 th step speed
							0111B: 7 th step speed
							1000B: 8 th step speed
							1001B: 9 th step speed
							1010B: 10 th step speed
							1011B: 11 th step speed
							1100B: 12 th step speed
							1101B: 13 th step speed
							1110B: 14 th step speed
							1111B: 15 th step speed
						Bit12	1: Enable the function of
							Bit6-11
						Bit13~14	00B: no function
							01B: Operation command by
							the digital keypad

Index	Sub	Definition	Factory Setting	R/W	Size		Note
			oottiing				10B: Operation command by Pr. 00-21 setting
							11B: Switch the source of
						Bit 15	Reserved
	2	Freq. command (XXX.XXHz)	0	RW	U16		
		, , , , , , , , , , , , , , , , , , ,				Bit0	1: E.F. ON
	3	Other trigger	0	RW	U16	Bit1	1: Reset
	0	Number	10	R	118	Bit15~2	Reserved
	1	Error code	0	R	U16	High byte: Low byte:	Warn code Error code
						Lott Syto.	00B: stop
							01B: decelerate to stop
						Bit 1~0	10B: waiting for operation
							command
						Bit 2	1: JOG command
						BRE	00B: forward running
				R			01B: switch from reverse
					U16	Bit 3~4	running to forward running
		AC motor drive status					10B: reverse running
	2		0				running to reverse running
						Bit 5~7	Reserved
						Bit 8	1: master frequency command controlled by communication interface
						Bit 9	1: master frequency command controlled by analog signal input
2021H						Bit 10	1: operation command controlled by communication interface
		Frank and				Bit 11~15	Reserved
	3	Freq. command	0	R	U16		
	4	Output freq. (XXX.XXHz)	0	R	U16		
	5	Output current (XX.XA)	0	R	U16		
	6	DC bus voltage (XXX.XV)	0	R	U16		
	7	Output voltage (XXX.XV)	0	R	U16		
	8	the multi-segment speed commend	0	R	U16		
	9	Reserved	0	R	U16		
	Α	Display counter value (c)	0	R	U16		
	В	Display output power angle (XX.X°)	0	R	U16		
	С	Display output torque (XXX.X%)	0	R	U16		
	D	Display actual motor speed (rpm)	0	R	U16		
	-	-	-	-	-		
	-	-	-	- D	-		
	0	Reserved	0	R	U16		
2022H	1	Display output current	0	R	U16		
	2	Display counter value	0	R	U16		

Index	Sub	Definition	Definition Factory Setting R/W Size		Note	
	3	Display actual output frequency (XXX.XXHz)	0	R	U16	
	4	Display DC-BUS voltage (XXX.XV)	0	R	U16	
	5	Display output voltage (XXX.XV)	0	R	U16	
	6	Display output power angle (XX.X°)	0	R	U16	
	7	Display output power in kW	0	R	U16	
	8	Display actual motor speed (rpm)	0	R	U16	
	9	Display estimate output torque (XXX.X%)	0	R	U16	
	-	-	-	-	-	-
	В	Display PID feedback value after enabling PID function in % (To 2 decimal places)	0	R	U16	
	с	Display signal of AVI 1 analog input terminal, 0-10V corresponds to 0-100% (To 2 decimal places)	0	R	U16	
	D	Display signal of ACI analog input terminal, 4-V20mA/0-10V corresponds to 0-100% (To 2 decimal places)	0	R	U16	
	E	Display signal of AVI 2 analog input terminal, -10V~10V corresponds to -100~100% (To 2 decimal places)	0	R	U16	
	F	Display the IGBT temperature of drive power module in °C	0	R	U16	
	10	Display the temperature of capacitance in °C	0	R	U16	
	11	The status of digital input (ON/OFF), refer to Pr.02-12	0	R	U16	
	12	The status of digital output (ON/OFF), refer to Pr.02-18	0	R	U16	
	13	Display the multi-step speed that is executing	0	R	U16	
	14	The corresponding CPU pin status of digital input	0	R	U16	
	15	The corresponding CPU pin status of digital output	0	R	U16	
	-	-	-	-	-	
	-	-	-	-	-	
	-	-	-	-	-	
	-	-	-	-	-	
	1A	Display times of counter overload (0.00~100.00%)	0	R	U16	
	1B	Display GFF in %	0	R	U16	
	1C	Display DCbus voltage ripples (Unit: Vdc)	0	R	U16	
	1D	Display PLC register D1043 data	0	R	U16	
	1E	Display Pole of Permanent Magnet Motor	0	R	U16	
	1F	User page displays the value in physical measure	0	R	U16	
	20	Output Value of Pr.00-05	0	R	U16	

Index	Sub	Definition	Factory Setting	R/W	Size	Note
	21	Number of motor turns when drive operates	0	R	U16	
	22	Operation position of motor	0	R	U16	
	23	Fan speed of the drive	0	R	U16	
	24	Control mode of the drive 0: speed mode 1: torque mode	0	R	U16	
	25	Carrier frequency of the drive	0	R	U16	

CANopen Remote IO mapping

Index	Sub	R/W	Definition					
	01h	R	Each bit corresponds to the different input terminals					
	02h	R	Each bit corresponds to the different input terminals					
	03h~40h	R	Reserved					
	41h	RW	Each bit corresponds to the different output terminals					
	42h~60h	R	Reserved					
2026H	61h	R	AVI1 (%)					
	62h	R	ACI (%)					
	63h	R	AVI2 (%)					
	64h~A0h	R	Reserved					
	A1h	RW	AFM1 (%)					
	A2h	RW	AFM2 (%)					

Delta Standard Mode (New definition)

lundarı			Size		Descriptions		Speed Mede
Index	Sub	R/W	Size	bit	Definition	Priority	Speed Mode
	00h	R	U8				
				0	Ack	4	0:fcmd =0 1:fcmd = Fset(Fpid)
				1	Dir	4	0: FWD run command 1: REV run command
				2			
				3	Halt		0: drive run till target speed is attained1: drive stop by deceleration setting
	01h	RW	U16	4	Hold		0: drive run till target speed is attained 1: frequency stop at current frequency
2060h				5	JOG		0:JOG OFF Pulse 1:JOG RUN
200011				6	QStop		Quick Stop
				7	Power		0:Power OFF 1:Power ON
				14~8			
				15			Pulse 1: Fault code cleared
	02h	RW	U16				
	03h	RW	U16				Speed command (unsigned decimal)
	04h	RW	U16				
	05h	RW	S32				
	06h	RW					
	07h	RW	U16				
	08h	RW	U16				

Index	aub		Size		Descriptions		Speed Mede
Index	Sub	R/W		bit	Definition	Priority	
				0	Arrive		Frequency attained
				1	Dir		0: Motor FWD run 1: Motor REV run
				2	Warn		Warning
	01h	R	U16	3	Error		Error detected
				4			
				5	JOG		JOG
				6	QStop		Quick stop
2061h				7	Power On		Switch ON
				15~8			
	02h	R					
	03h	R	U16				Actual output frequency
	04h	R					
-	05h	R	S32				Actual position (absolute)
	06h	R					
	07h	R	S16				Actual torque

DS402 Standard

Index	Sub	Definition	Factory Setting	R/W	Size	Unit	PDO Map	Mode	Note
6007h	0	Abort connection option code	2	RW	S16		Yes		0: No action 2: Disable Voltage
000711			-				100		3. quick stop
603Fh	0	Error code	0	R0	U16		Yes		
6040h	0	Control word	0	RW	U16		Yes		
6041h	0	Status word	0	R0	U16		Yes		
6042h	0	vl target velocity	0	RW	S16	rpm	Yes	vl	
6043h	0	vl velocity demand	0	RO	S16	rpm	Yes	vl	
6044h	0	vl control effort	0	RO	S16	rpm	Yes	vl	
604Fh	0	vl ramp function time	10000	RW	U32	1ms	Yes	vl	Unit must be: 100ms, and
6050h	0	vl slow down time	10000	RW	U32	1ms	Yes	vl	check if the setting is set to
6051h	0	vl quick stop time	1000	RW	U32	1ms	Yes	vl	0.
605Ah	0	Quick stop option code	2	RW	S16		No		0 : disable drive function 1 :slow down on slow down ramp 2: slow down on quick stop ramp 5 slow down on slow down ramp and stay in QUICK STOP 6 slow down on quick stop ramp and stay in QUICK STOP
605Ch	0	Disable operation option code	1	RW	S16		No		0: Disable drive function 1: Slow down with slow down ramp; disable of the drive function
6060h	0	Mode of operation	2	RW	S8		Yes		1: Profile Position Mode 2: Velocity Mode 4: Torque Profile Mode 6: Homing Mode
6061h	0	Mode of operation display	2	RO	S8		Yes		Same as above
6071h	0	tq Target torque	0	RW	S16	0.1%	Yes	tq	Valid unit: 1%

Index	Sub	Definition	Factory Setting	R/W	Size	Unit	PDO Map	Mode	Note
6072h	0	tq Max torque	150	RW	U16	0.1%	No	tq	Valid unit: 1%
6075h	0	tq Motor rated current	0	RO	U32	mA	No	tq	
6077h	0	tq torque actual value	0	RO	S16	0.1%	Yes	tq	
6078h	0	tq current actual value	0	RO	S16	0.1%	Yes	tq	
6079h	0	tq DC link circuit voltage	0	RO	U32	mV	Yes	tq	

15-5 CANopen Fault Codes

1	Fault	Display error signal
2	осА	The code is displayed as shown on KPC-CE01.
3	Oc at accel	3 Display error description

* Follow the settings of Pr. 06-17~Pr. 06-22.

ID No.	Display	Fault code	Description	CANopen fault register (bit 0~7)	CANopen fault code
1	Fault ocA Oc at accel	0001H	Over-current during acceleration	1	2213 H
2	HAND Fault ocd Oc at decel	0002H	Over-current during deceleration	1	2213 H
3	HAND Fault Ocn Oc at normal SPD	0003H	Over-current during steady status operation	1	2214H
4	HAND Fault GFF Ground fault	0004H	Ground fault. When (one of) the output terminal(s) is grounded, short circuit current is more than 50% of AC motor drive rated current. NOTE: The short circuit protection is provided for AC motor drive protection, not for protection of the user.	1	2240H
5	HAND Fault occ Short Circuit	0005H	Short-circuit is detected between upper bridge and lower bridge of the IGBT module.	1	2250H
6	HAND Fault ocS Ocatstop	0006H	Over-current at stop. Hardware failure in current detection	1	2314H
7	HAND Fault ovA Ov at accel	0007H	Over-current during acceleration. Hardware failure in current detection	2	3210H
8	Fault ovd Ov at decel	0008H	Over-current during deceleration. Hardware failure in current detection.	2	3210H

ID No.	Display	Fault code	Description	CANopen fault register (bit 0~7)	CANopen fault code
9	HAND Fault OVN Ov at normal SPD	0009H	Over-current during steady speed. Hardware failure in current detection.	2	3210H
10	Fault ovS Ov at stop	000AH	Over-voltage at stop. Hardware failure in current detection	2	3210H
11	Fault LvA Lv at accel	000BH	DC BUS voltage is less than Pr.06.00 during acceleration.	2	3220H
12	HAND Fault L∨d Lv at decel	000CH	DC BUS voltage is less than Pr.06.00 during deceleration.	2	3220H
13	HAND Fault Lvn Lv at normal SPD	000DH	DC BUS voltage is less than Pr.06.00 in constant speed.	2	3220H
14	намо Fault LvS Lv at stop	000EH	DC BUS voltage is less than Pr.06-00 at stop	2	3220H
15	HAND Fault OrP Phase Lacked	000FH	Phase Loss Protection	2	3130H
16	HAND Fault oH1 IGBT over heat	0010H	IGBT overheat IGBT temperature exceeds protection level. 1~15HP: 90°C 20~100HP: 100°C	3	4310H
17	HAND Fault oH2 Hear Sink oH	0011H	Heat sink overheat Heat sink temperature exceeds 90°C	3	4310H
18	HAND Fault tH1o Thermo 1 open	0012H	Temperature detection circuit error (IGBT) IGBT NTC	3	FF00H
19	HAND Fault tH2o Thermo 2 open	0013H	Temperature detection circuit error (capacity module) CAP NTC	3	FF01H

ID No.	Display	Fault code	Description	CANopen fault register (bit 0~7)	CANopen fault code
21	HAND Fault oL Inverter oL	0015H	Overload. The AC motor drive detects excessive drive output current. NOTE: The AC motor drive can withstand up to 150% of the rated current for a maximum of 60 seconds.	1	2310H
22	Fault EoL1 Thermal relay 1	0016H	Electronics thermal relay 1 protection	1	2310H
23	HAND Fault EoL2 Thermal relay 2	0017H	Electronics thermal relay 2 protection	1	2310H
24	HAND Fault oH3 Motor over heat	0018H	Motor PTC overheat	3	FF20H
26	HAND Fault ot1 Over torque 1	001AH	These two fault codes will be displayed when output current exceeds the over-torque detection level (Pr 06-07	3	8311H
27	HAND Fault ot2 Over torque 2	001BH	or Pr.06-10) and exceeds over-torque detection (Pr.06-08 or Pr.06-11) and it is set 2 or 4 in Pr.06-06 or Pr.06-09.	3	8311H
28	HAND Fault uC Under torque 1	001CH	Low current	1	8321H
30	Fault cF1 EEPROM write Err	001EH	Internal EEPROM cannot be programmed.	5	5530H
31	Fault cF2 EEPROM read Err	001FH	Internal EEPROM cannot be read.	5	5530H
33	Fault cd1 las sensor Err	0021H	U-phase error	1	FF04H
34	HAND Fault cd2 Ibs sensor Err	0022H	V-phase error	1	FF05H

ID No.	Display	Fault code	Description	CANopen fault register (bit 0~7)	CANopen fault code
35	Fault cd3 Ics sensor Err	0023H	W-phase error	1	FF06H
36	HAND Fault Hd0 cc HW Error	0024H	cc (current clamp) hardware error	5	FF07H
37	HAND Fault Hd1 oc HW Error	0025H	oc hardware error	5	FF08H
38	HAND Fault Hd2 ov HW Error	0026H	ov hardware error	5	FF09H
39	HAND Fault Hd3 GFF HW Error	0027H	GFF hardware error	5	FF0AH
40	HAND Fault AUE Auto tuning Err	0028H	Auto tuning error	1	FF21H
41	Fault AFE PID Fbk Error	0029H	PID loss (ACI)	7	FF22H
48	Fault ACE ACI loss	0030H	ACI loss	1	FF25H
49	Fault EF External Fault	0031H	External Fault When input EF (N.O.) on external terminal is closed to GND, AC motor drive stops output U, V, and W.	5	9000H
50	Fault EF1 Emergency stop	0032H	Emergency stop When the multi-function input terminals MI1 to MI6 are set to emergency stop, the AC motor drive stops output U, V, W and the motor coasts to stop.	5	9000H
51	Fault bb Base block	0033H	External Base Block When the external input terminals MI1 to MI16 are set as bb and active, the AC motor drive output will be turned off	5	9000H

ID No.	Display	Fault code	Description	CANopen fault register (bit 0~7)	CANopen fault code
52	HAND Fault Pcod Password Error	0034H	Password will be locked if three fault passwords are entered	5	FF26H
53	Fault ccod SW code Error	0035H	Software error	5	6100H
54	Fault cE1 Modbus CMD err	0036H	Illegal function code	4	7500H
55	Fault cE2 Modbus ADDR err	0037H	Illegal data address (00H to 254H)	4	7500H
56	Fault cE3 Modbus DATA err	0038H	Illegal data value	4	7500H
57	Fault cE4 Modbus slave FLT	0039H	Data is written to read-only address	4	7500H
58	Fault cE10 Modbus time out	003AH	Modbus transmission timeout.	5	7500H
59	Fault cP10 Keypad time out	003BH	Keypad transmission timeout.	4	7500H
60	Fault bF Braking fault	003CH	Brake resistor fault	4	7110H
61	HAND Fault ydc Y-delta connect	003DH	Motor Y-Δ switch error	2	3330H
62	HAND Fault dEb Dec. Energy back	003EH	Energy regeneration when decelerating	2	FF27H

ID No.	Display	Fault code	Description	CANopen fault register (bit 0~7)	CANopen fault code
63	HAND Fault oSL Over slip Error	003FH	Over slip error. Slip exceeds Pr.05.26 limit and slip duration exceeds Pr.05.27 setting.	7	FF28H
64	HAND Fault ryF MC Fault	0040H	Electric valve switch error when executing Soft Start.	5	7110H
72	HAND Fault STL1 STO Loss 1	0048H	STO1~SCM1 internal hardware detect error	5	5441H
73	HAND Fault S1 S1-Emergy stop	0049H	External safety emergency stop	5	FF2AH
74	HAND Fault Fire On Fire	004AH	Fire mode	7	FF2FH
76	HAND Fault STO STO	004CH	Safe torque off function active	5	7110H
77	HAND Fault STL2 STO Loss 2	004DH	STO2~SCM2 internal hardware detect error.	5	5440H
78	HAND Fault STL3 STO Loss 3	004EH	STO1~SCM1 & STO2~SCM2 internal hardware detect error.	5	5442H
79	Fault Uoc U phase oc	004FH	U-phase short circuit	1	FF2BH
80	HAND Fault Voc V phase oc	0050H	V-phase short circuit	1	FF2CH
81	Fault Woc W phase oc	0051H	W-phase short circuit	1	FF2DH

ID No.	Display	Fault code	Description	CANopen fault register (bit 0~7)	CANopen fault code
82	Fault OPHL U phase lacked	0052H	U phase output phase loss	2	2331H
83	HAND Fault OPHL U phase lacked	0053H	V phase output phase loss	2	2332H
84	HAND Fault OPHL U phase lacked	0054H	W phase output phase loss	2	2333H
90	HAND Fault Fstp For ce Stop	005AH	Internal PLC forced to stop Verify the setting of Pr.00-32	7	FF2EH
99	HAND Fault TRAP CPU Trap Error	0063H	CPU trap error	7	6000H
101	HAND Fault CGdE Guarding T-out	0065H	Guarding time-out 1	4	8130H
102	HAND Fault CHbE Heartbeat T-out	0066H	Heartbeat time-out	4	8130H
103	Fault CSyE SYNC T-out	0067H	CAN synchrony error	4	8700H
104	Fault CbFE CAN/S bus off	0068H	CAN bus off	4	8140H
105	Fault CIdE CAN/S Idx exceed	0069H	Can index exceed	4	8110H
106	Fault CAdE CAN/S add. set	006AH	CAN address error	4	0x8100

ID No.	Display	Fault code	Description	CANopen fault register (bit 0~7)	CANopen fault code
107	Fault CFrE CAN/S FRAM fail	006BH	CAN frame fail	4	0x8100
111	Fault ictE InrCom Time Out	006FH	Internal communication error	4	7500H

15-6 CANopen LED Function

There are two CANopen flash signs: RUN and ERR.

RUN LED:

LED status	Condition	CANopen State	
OFF		Initial	
Blinking	ON-200 200 ms ms	Pre-Operation	
Single flash	ON - 200 200 100 ms ms ms ms ms	Stopped	
ON		Operation	

ERR LED:

Chapter 16 PLC Function Applications

- 16-1 PLC Summary
- 16-2 Notes before PLC use
- 16-3 Turn on
- 16-4 Basic principles of PLC ladder diagrams
- 16-5 Various PLC device functions
- 16-6 Introduction to the Command Window
- 16-7 Error display and handling
- 16-8 CANopen Master control applications
- 16-9 Explanation of various PLC speed mode controls
- 16-10 Internal communications main node control
- 16-11 Modbus remote IO control applications (use MODRW)
- 16-12 Calendar functions

16-1 PLC Summary

16-1-1 Introduction

The commands provided by the CP2000's built-in PLC functions, including the ladder diagram editing tool WPLSoft, as well as the usage of basic commands and applications commands, chiefly retain the operating methods of Delta's PLC DVP series.

16-1-2 WPLSoft ladder diagram editing tool

WPLSoft is Delta's program editing software for the DVP and CP2000 programmable controllers in the Windows operating system environment. Apart from general PLC program design general Windows editing functions (such as cut, paste, copy, multiple windows, etc.), WPLSoft also provides many Chinese/English annotation editing and other convenience functions (such as registry editing, settings, file reading, saving, and contact graphic monitoring and settings, etc.).

Item	System requirements					
Operating system Windows 95/98/2000/NT/ME/XP						
CPU	At least Pentium 90					
Memory	At least 16MB (32MB and above is recommended)					
Hard drive	Hard drive capacity: at least 100MB free space					
Hard drive	One optical drive (for use in installing this software)					
Display	Resolution: 640×480, at least 16 colors; it is recommended that the screen					
Display	area be set at 800×600 pixels					
Mouse	Ordinary mouse or Windows-compatible device					
Printer	Printer with a Windows driver program					
RS-485 port	Must have at least one RS-485 port to link to the PLC					

The following basic requirements that need to install WPLSoft editing software:

16-2 Notes before PLC use

- 1. The PLC has a preset communications format of 7,N,2,9600, with node 2; the PLC node can be changed in parameter 09-35, but this address may not be the same as the converter's address setting of 09-00.
- The CP2000 provides 2 communications serial ports that can be used to download PLC programs (see figure below). Channel 1 has a fixed communications format of 19200,8,N,2 RTU.

3. The client can simultaneously access data from the converter and internal PLC, which is performed through identification of the node. For instance, if the converter node is 1 and the internal PLC node is 2, then the client command will be

01 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in converter parameter 04-00

02 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in internal PLC X0

- 4. The PLC program will be disabled when uploading/downloading programs.
- 5. Please note when using WPR commands to write in parameters, values may be modified up to a maximum of 10⁹ times, otherwise a memory write error will occur. The calculation of modifications is based on whether the entered value has been changed. If the entered value is left unchanged, the modifications will not increase afterwards. But if the entered value is different from before, the number of modifications will increase by one. Those parameters in the table below are exceptions, please proceed to the next page for details:

	CP2000
Pr00-10, Control mode	
Pr00-11, Velocity mode;	Yes
Pr00-12, P2P mode	
Pr00-13, Torque mode	
Pr01-12~P01-19, 1 st ~ 4 th Acc/Dec time;	Yes
Pr02-12, MULTI-Input ACT;	Yes
Pr02-18,MULTI-Output ACT	Yes
Pr04-50~Pr04-59 PLC buffer 1~10;	Yes
Pr08-04,Up Limit for I	Yes
Pr08-05,PID Out-Limit %;	Yes
Pr10-17, Electrical Gear A	

6. When parameter 00-04 is set as 28, the displayed value will be the value of PLC register D1043 (see figure below):

- 7. In the PLC Run and PLC Stop mode, the content 9 and 10 of parameter 00-02 cannot be set nor be reset to the default value.
- 8. The PLC can be reset to the default value when parameter 00-02 is set as 6.
- 9. The corresponding MI function will be disabled when the PLC writes to input contact X.
- 10. When the PLC controls converter operation, control commands will be entirely controlled by the PLC and will not be affected by the setting of parameter 00-21.
- 11. When the PLC controls converter frequency commands (FREQ commands), frequency commands will be entirely controlled by the PLC, and will not be affected by the setting of parameter 00-20 or the Hand ON/OFF configuration.
- 12. When the PLC controls converter frequency (TORQ commands), torque commands will be entirely controlled by the PLC, and will not be affected by the setting of parameter 11-33 or the Hand ON/OFF configuration.
- 13. When the PLC controls converter frequency (POS commands), position commands will be entirely controlled by the PLC, and will not be affected by the setting of parameter 11-40 or the Hand ON/OFF configuration.
- 14. When the PLC controls converter operation, if the keypad Stop setting is valid, this will trigger an FStP error and cause stoppage.

VENU

16-3 Turn on

16-3-1 Connect to PC

Start operation of PLC functions in accordance with the following four steps

 After pressing the Menu key and selecting <u>4: PLC Function</u> on the KPC-CC01 digital keypad, press the Enter key (see figure below).

If the optional KPC-CE01 digital keypad is used, employ the following method:

Switch to the main PLC2 screen: After powering up the drivers, press the key on the

KPC-CE01 once to switch to the function screen, which will then display "PrSET." After using the

will display "End," and will jump back to "PLC2" after 1 to 2 seconds. When no program has been

downloaded to the drivers, the program can continue to run even if a PLC warning message

appears.

Chapter 16 PLC Function Applications | CP2000

2. Wiring: Connect the driver's RJ-45 communications interface to a PC via the RS485

3. PLC function usage

PLC	 PLC funct item 2 and 1: No function 2: Enable PLC 3: Stop PLC full 	ions are as shown in the figure on the left; select d implement PLC functions. (Disable) (PLC Run) nctions (PLC Stop)
Optional product: PLC fur	nction display	PLC 0 : Do not implement PLC functions
method on KPC-CE01 dig	gital keypad	PLC 1 : Initiate PLC Run

When the external multifunctional input terminals (MI1 to MI8) are in PLC Mode select bit0 (51) or PLC Mode select bit1 (52), and the terminal contact is closed or open, it will compulsorily switch to the PLC mode, and keypad switching will be ineffective. Corresponding actions are as follows:

PLC 2 : Initiate PLC Stop

PLC	mode	PLC Mode select hit1(52)	PLC Mode select bit0 (51)		
Using KPC-CC01	Using KPC-CE01	FEC Mode select bit (32)			
Disable	PLC 0	OFF	OFF		
PLC Run	PLC 1	OFF	ON		
PLC Stop	PLC 2	ON	OFF		
Maintain previous state	Maintain previous state	ON	ON		

Use of KPC-CE01 digital keypad to implement PLC functions

- ☑ When the PLC screen switches to the PLC1 screen, this will trigger one PLC action, and the PLC program start/stop can be controlled by communications via the WPL.
- ☑ When the PLC screen switches to the PLC2 screen, this will trigger one PLC stop, and the PLC program start/stop can be controlled by communications via the WPL.
- ☑ The external terminal control method is the same as shown in the table above.

When input/output terminals (FWD REV MI1 to MI8 MI10 to 15, Relay1~3RY10 to RY15, MO10 to MO11,) are included in the PLC program, these input/output terminals will only be used by the PLC. As an example, when the PLC program controls Y0 during PLC operation (PLC1 or PLC2), the corresponding output terminal relay (RA/RB/RC) will operate in

Chapter 16 PLC Function Applications | CP2000

accordance with the program. At this time, the multifunctional input/output terminal setting will be ineffective. Because these terminal functions are already being used by the PLC, the DI DO AO in use by the PLC can be determined by looking at parameter 02-52, 02-53, and 03-30.

- When the PLC's procedures use special register D1040, the corresponding AO contact AFM1 will be occupied, and AFM2 corresponding to special register D1045 will have the same situation.
- Parameter 03-30 monitors the state of action of the PLC function analog output terminal; Bit0 corresponds to the AFM1 action state, and Bit1 corresponds to the AFM2 action state.

16-3-2 I/O device explanation

Input devices:

Serial	X0	X1	X2	X3	X4	X5	X6	X7	X10	X11	X12	X13	X14	X15	X16	X17
No.																
1	FWD	REV	MI1	MI2	MI3	MI4	MI5	MI6	MI7	MI8						
2											MI10	MI11	MI12	MI13	MI14	MI15
3											MI10	MI11	MI12	MI13		

1: Control I/O

2: Expansion card EMC-D611A (D1022=4)

3: Expansion card EMC-D42A (D1022=5)

Output devices:

Serial No.	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y10	Y11	Y12	Y13	Y14	Y15	Y16	Y17
1	RY1	RY2	RY3													
2						MO10	MO11									
3						RY10	RY11	RY12	RY13	RY14	RY15					

1: Control I/O

2: Expansion card EMC-D42A (D1022=5)

3: Expansion card EMC-R6AA (D1022=6)

16-3-3 Installation WPLSoft

See Delta's website for WPLSoft editing software:

http://www.delta.com.tw/product/em/download/download_main.asp?act=3&pid=3&cid=1&tpid=3

16-3-4 Program writing

After completing installation, the WPLSoft program will be installed in the designated subfolder "C:\Program Files\Delta Industrial Automation\WPLSoft x.xx." The editing software can now be run by clicking on the WPL icon using the mouse.

The WPL editing window will appear after 3 seconds (see figure below). When running WPLSoft for the first time, before "New file" has been used, only the "File (F)," "Communications (C)," View (V)," "Options (O)," and "Help (H)" columns will appear on the function toolbar.

After running WPLSoft for the second time, the last file edited will open and be displayed in the editing window. The following figure provides an explanation of the WPLSoft editing software window:

Chapter 16 PLC Function Applications | CP2000

Click on the colbar in the upper left part of the screen: opens new file (Ctrl+N)

You can also use "File (F)"=> New file (N) (Ctrl+N)

File	Edit	Compiler	Comm
	New	Ctrl+	N
j 🚰 9	<u>O</u> pen	Ctrl+	0
	Save	Ctrl	+S
	Save <u>A</u> s	Ctrl+Alt-	+S

The "Device settings" window will appear after clicking. You can now enter the project title and filename, and select the device and communication settings to be used

VFD-C2000/CH2000/C -
MC
VFD E Type
VFD-C2000/CH2000/CT20
VFD-C200 VFD-CP2000
TP04P

Communications settings: Perform settings in accordance with the desired communications method

-		
Туре	RS232	_
Communication Sett	ing	
COM Port	COM3	• ASCII
Data Length	7 -	C RTU (8 bits
Parity	Even]
Stop Bits	1 -	Auto-detect
Baud Rate	9600 -]
Station Address	1	Default
Ethemet Setting		
🗖 Assign IP		
Port	12346	
Baud Rate Decide	d by	
PLC Setting		
C WPL Setting		
Setup Responding	g Time	
Times of Auto-ret	ry	3
Time Interval of A	uto-retry (sec.)	3 -

Press Confirm after completing settings and begin program editing. There are two program editing methods; you can choose whether to perform editing in the command mode or the ladder diagram mode.

😂 Dvp0[Test] - Delta WPLSoft	a suran da suran da suran da suran da suran da suran d		
<u>File Edit Compiler Comments</u>	Search View C	ommunication Options Wizard Window Help	
🗋 🗅 🖨 📰 🗃 🔍 🔍 🛛	0 🖸 🦪 👘	🔍 < < Ø 🛛 🐺 😸 () 1 📑 🖨 🔅	3 4
📓 🏗 🇯 🔮 🖄 🗟 🗎	899	🏦 📰 🖉 😋 🖓 📮 🖓 😂 🖉	祖氏間 🔍 🔍 🚆 🖕
Relay Type	1 😤 🛱 🖓	FB FB 前能 市市 赤橋 諾 🔤 🖀 🔤 B	5 ¢ m 🛛 4 🗓 🖻 m
Communication Setting ✓ RS232	Instructio	NOP	
Ethernet	000002	NOD	
- 3 Directore - 3 Directore - 3 Erbestor - 3 Erbestor - 4 USB - 5 DirectLink - 4 USB - 4 USB - 5 Ethernet	000003 000004 000005 000006 000007 000008 000009 000011 000011 •	Ladder Diegram Mode	
I Overwrite Row: 0,	Col: 1	0/10000 Steps	VFD-C2000/CH2000/CT2000 (PLC Station Address: 1)

Chapter 16 PLC Function Applications | CP2000

In ladder diagram mode, you can perform program editing using the buttons on the function icon row

Bil Dvp0[Test] - Del	elta WPLSoft	
Eile Edit Compile	iler Comments Search View Communication Options Wizard Window Help	
	◎ ◎ X ⓑ ⓑ Ø 3 Q < < Ø 寻 ≅ 0 1 3 0 0 - 4	
B I 0 0 0	OBDECTS 2 BRODES BRODE B	
Relay Type	「	🛛 🕂 🗊 🗁 📾
Dvp0[Test] - Deita WPLSoft		- 0 - X -
File Edit Compiler Comments S	Search New Communication Options Wizard Window Help	
Relay Type 41 2 27 22 23 2		
Communication Setting	실 I Ladder Diagram Mode	- <u>-</u> .
		n j
		¥

Basic Operation

Example: Input the ladder diagram in the following figure

Γ	MID		NO.	
l		(10	'
			END.	

Mouse operation and keyboard function key (F1 to F12) operation

1. The following screen will appear after a new file has been established:

😫 Dvp0 - Delta WPLSoft	
Eile Edit Compiler Comments Search View Communication Options Wizard Window Help	
🔁 💣 🖩 🗃 🗿 🐵 X 🗈 🗈 🥏 4 🔍 4 🔍 9	
圖 遼 倖 ৫ 23 目 毎 7 〒 5 9 28 目 目 7 0 ● 5 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	16 °
😝 💵 🐣 🖻 🕿 🖀 🔤 ដឹង ដែង តែ ត្រ ត្រ ត្រ ត្រ ត្រ 👔 តែ តំ ត ដែង 🔤 🖀 🔤 🐣 🔜 😝	m
🔛 Instruction List Mode	
😳 🗄 Ladder Diagram Mode	
00	
Overwrite Row: 0, Col: 1 3/15872 Steps	SA2

2. Use the mouse to click on the always-open switch icon the function key F1:

3. After the name of the input device and the comment dialog box have appeared, the device name (such as "M"), device number (such as "10"), and input comments (such as "auxiliary contact") can be selected; press the Confirm button when finished.

input Device Inst	ruction		
	v opened conta	ct	
Device Name	M	•	ок
Device Number	10	÷	Cancel
Internal Relay			
Range	M0M4095		
Comment	Internal Relay	t	

🙀 Dvp0 - Delta WPLSoft - [Ladder Diagram Mode]	🔳 🗆 🐱
📜 File Edit Compiler Comments Search Yiew Communication Options Wizard Window Help	_ @ ×
[D @ 聞 図 ◎ X № @ / (3 < < 0	
	s 🗄 Q Q 🖳 🛳 🐺 🚳 🔅
Relay Type 🔤 背 投 常 群 常 常 好 雨 青 前 股 「市 市 品 鞴 誌 🎟 🏛 🕰	5 4 🛍 🖂 🗄 📓 📴 🛍
M0 Input Device Instruction	
Comment Output Col	
	×
Overwrite Row: 0, Col: 2 3/15872 Steps	SA2

5. Click on application command icon 🗟 or press function key F6. Click on "All application

commands" in the function classification field, and click on the End command in the application command pull-down menu, or use the keyboard to key in "End" in that field, and press the confirm button.

📽 Dvp0 - Delta WPLSoft - [Ladder Diagram Mode]				
Eile Edit Comgiler Co	mments Search View Communication Options Wizard Window Help	_ 8 ×		
i 🗋 🖨 📰 🖾 💿 💿	X III III 🖉 🕆 🔍 🔍 🥹			
- 🖾 🗵 🕮 🗳 🖄 -	□ 🖮 🍠 叩 🕫 🗑 🗑 🗑 🐨 🗣 🗣 🗣 🖉 🖉 🗮 💆 🖉 🖷 🖉 📿 🗮 🗮 🖉	F 🗟 📍		
Relay Type 🛛 🖌 🚏	Application Instructions	m		
MO	Application Instructions	^		
	Instruction Type All Application Instructions OK			
	AFI Number Application Instruction ELD Cancel			
	Explanation Program end FAND< FAND<= FAND> FAND> FAND> FAND> FAND> FAND> FAND> FAND> FAND> FAND> FAND>	8		
Overwrite Row 1, cor 1 SA2				

6. Click on the *icon*, which will compile the edited ladder diagram as a command program.

After compiling, the number of steps will appear on the left side of the busbar.

🕞 Dvp0 - L	Delta WPLSoft - [Ladder Diagra	ım Mode]				
🗄 Eile E	dit Compiler Comments Search	View Communication Opt	ions Wizar <u>d W</u> ir	adow <u>H</u> elp		- 8 ×
i 🗋 🖨 🖥	: 🗃 🗿 🚳 🕺 🐚 🛍 d	7 <u> </u>				
1 SR 12 R	🖗 🔮 🖄 📚 🔟 🐸 🍠 🛡	9928800) 💀 🔜 😒 🕃	👬 🐥 🖫 🖫 🗮	Q Q 🗒 💁 🐺	3
Relay Type	■ 許 該 鹊 鹊 읞 電	12日前前撤 南	南西關縣	i 💷 🏦 🚾 🚍	4 📅 🖂 👫 🚺 📴	
0	MO					^
	├──┤ ├────					
2						
15871		Delta WPLSoft 🛛 🔀				-
		Compiling is complete!				
		ГОК;				
		<u></u>				
						_
<						>
	Overwrite Row:0		3/15872 Steps			SA2

16-3-5 Program download

After inputting a program using WPLSoft, select compile . After completing compilation, select

the sto download a program. WPLSoft will perform program download with the online PLC in the communications format specified in communications settings.

16-3-6 Program monitoring

While confirming that the PLC is in the Run mode, after downloading a program, click on *solver* in the communications menu and select start ladder diagram control (see figure below)

16-4 Basic principles of PLC ladder diagrams

16-4-1 Schematic diagram of PLC ladder diagram program scanning

16-4-2 Introduction to ladder diagrams

Ladder diagrams comprise a graphic language widely applied in automatic control, and employs common electrical control circuit symbols. After a ladder diagram editor has been used to create a ladder pattern, PLC program designed is completed. The use of a graphic format to control processes is very intuitive, and is readily accepted by personnel who are familiar with electrical control circuit technology. Many of the basic symbols and actions in a ladder diagram comprise commonly seen electrical devices in conventional automatic control power distribution panels, such as buttons, switches, relays, timers, and counters.

Internal PLC devices: The types and quantities of internal PLC devices vary in different brands of products. Although these internal devices use the same names as conventional electrical control circuit elements such as relays, coils, and contacts, a PLC does not actually contain these physical devices, and they instead correspond to basic elements in the PLC's internal memory (bits). For instance, if a bit is 1, this may indicate that a coil is electrified, and if that bit is 0, it will indicate that the coil is not electrified. An NO contact (Normal Open, or contact a) can be used to directly read the value of the corresponding bit, and an NC contact (Normal Close, or contact b) can

be used to obtain the inverse of the bit's value. Multiple relays occupy multiple bits, and 8 bits comprise one byte; two bytes comprise one word, and two words comprise a double word. When multiple relays are processing at the same time (such as addition/subtraction or displacement, etc.), a byte, word, or double word can be used. Furthermore, a PLC contains two types of internal devices: a timer and a counter. It not only has a coil, but can count time and numerical values. Because of this, when it is necessary to process some numerical values, these values are usually in the form of bytes, words, or double words.

The various internal devices in a PLC all account for a certain quantity of storage units in the PLC's storage area. When these devices are used, the content of the corresponding storage area is red in the form of bits, bytes, or words.

Device type Description of Function An input relay constitutes the basic unit of storage in a PLC's internal memory corresponding to an external input point (which serves as a terminal connecting with an external input switch and receiving external input signals). It is driven by external input signals, to which it assigns values of 0 or 1. A program design method cannot change the input relay status, and therefore cannot rewrite the corresponding basic units of an input relay, and WPLSoft cannot be used to Input Relay perform compulsory On/Off actions. A relay's contacts (contacts a and b) can be used an unlimited number of times. An input relay with no input signal must be left idle and cannot be used for some other purpose. $\mathbf{\nabla}$ Device indicated as: X0, X1, X7, X10, X11, etc. This device is expressed with the symbol "X," and a device's order is indicated with an octal number. Input point numbers are indicated in Page 16-8. I/O devices explanation. An output relay constitutes the basic unit of storage in a PLC's internal memory corresponding to an external output point (which connects with an external load). It may be driven by an input relay contact, a contact on another internal device, or its own contacts. It uses one NO contact to connect with external loads or other contacts, and, like input contacts, can use the contact an unlimited number of **Output Relay** times. An output relay with no input signal will be idle, but may be used an internal relay if needed. Device indicated as: Y0, Y1, Y7, Y10, Y11, etc. This device is expressed with the symbol "Y," and a device's order is indicated with an octal number. Output point numbers are indicated in Page 16-8. I/O devices explanation. Internal relays have no direct connection with the outside. These relays are auxiliary relays inside a PLC. Their function is the same as that of an auxiliary (central) relay in an electrical control circuit: Each auxiliary relay corresponding to a basic unit of internal storage; they can be driven by input relay contacts, output relay contacts, and the contacts of other internal devices. An internal auxiliary Internal Relay relay's contact can also be used an unlimited number of times. Internal relays have no outputs to outside, and must output via an output point. $\mathbf{\nabla}$ Device indicated as: M0, M1 to M799, etc. This device is expressed as the symbol "M," expressed, and its order is expressed as a decimal number. A counter is used to perform counting operations. A count setting value (such as the number of pulses to be counted) must be assigned when a counter is used. A counter contains a coil, contact, and a counting storage device. When the coil goes from Off \rightarrow to On, this indicates that the counter has an input pulse, and one Counter is added to its count. There are 16 bits that can be employed by the user. $\mathbf{\Lambda}$ Device indicated as: C0, C1 to C79, etc. This device is expressed as the symbol "C," expressed, and its order is expressed as a decimal number.

Introduction to the basic internal devices in a PLC

Device type	Description of Function
Timer	A timer is used to complete control of timing. The timer contains a coil, contact, and a time value register. When the coil is electrified, if the preset time is reached, the contact will be actuated (contact a will close, contact b will open), and the timer's fixed value be given by the set value. Timer has a regulated clock cycle (timing units: 100 ms). As soon as power to the coil is cut off, the contact will no longer be actuated (contact a will open, contact b will close), and the original timing value will return to zero.
	Device indicated as: T0, T1 to T159, etc. The device is expressed as the symbol "T," and its order is expressed as a decimal number.
Data register	When a PLC is used to perform various types of sequence control and set time value and count value control, it most commonly perform data processing and numerical operations, and data registers are used exclusively for storage of data and various parameters. Each data register contains 16 bits of binary data, which means that it can store one word. Two data registers with adjacent numbers can be used to process double words.
	Device indicated as: D0, D1 to D399, etc. The device is expressed as the symbol "D," and its order is expressed as a decimal number.

Ladder diagram images and their explanation

Ladder diagram structures	Explanation of commands	Command	Using Device
	NO switch, contact a	LD	$X \mathrel{\scriptstyle{\scriptstyle\vee}} Y \mathrel{\scriptstyle{\scriptstyle\vee}} M \mathrel{\scriptstyle{\scriptstyle\vee}} T \mathrel{\scriptstyle{\scriptstyle\vee}} C$
<u> </u> и	NC switch, contact b	LDI	Χ、Υ、Μ、Τ、Ϲ
	Series NO	AND	Χ、Υ、Μ、Τ、Ϲ
	Series NC	ANI	$X \cdot Y \cdot M \cdot T \cdot C$
	Parallel NO	OR	$X \mathrel{\scriptstyle{\scriptstyle\vee}} Y \mathrel{\scriptstyle{\scriptstyle\vee}} M \mathrel{\scriptstyle{\scriptstyle\vee}} T \mathrel{\scriptstyle{\scriptstyle\vee}} C$
	Parallel NC	ORI	$X \mathrel{\scriptstyle{\scriptstyle\vee}} Y \mathrel{\scriptstyle{\scriptstyle\vee}} M \mathrel{\scriptstyle{\scriptstyle\vee}} T \mathrel{\scriptstyle{\scriptstyle\vee}} C$
	Positive edge-triggered switch	LDP	Χ、Υ、Μ、Τ、Ϲ
	Negative edge-triggered switch	LDF	Χ、Υ、Μ、Τ、Ϲ
	Positive edge-triggered series	ANDP	$X \mathrel{\scriptstyle{\cdot}} Y \mathrel{\scriptstyle{\cdot}} M \mathrel{\scriptstyle{\cdot}} T \mathrel{\scriptstyle{\cdot}} C$
	Negative edge-triggered series	ANDF	$X \mathrel{\scriptstyle{\cdot}} Y \mathrel{\scriptstyle{\cdot}} M \mathrel{\scriptstyle{\cdot}} T \mathrel{\scriptstyle{\cdot}} C$
	Positive edge-triggered parallel	ORP	$X \mathrel{\scriptstyle{\scriptstyle\vee}} Y \mathrel{\scriptstyle{\scriptstyle\vee}} M \mathrel{\scriptstyle{\scriptstyle\vee}} T \mathrel{\scriptstyle{\scriptstyle\vee}} C$
	Negative edge-triggered parallel	ORF	Χ、Υ、Μ、Τ、Ϲ
	Block series	ANB	N/A

Ladder diagram structures	Explanation of commands	Command	Using Device
	Block parallel	ORB	N/A
	Multiple outputs	MPS MRD MPP	N/A
O	Coil driven output commands	OUT	Υ、M
	Some basic commands, applications commands	Some basic commands Applications commands	
	Inverted logic	INV	N/A

16-4-3 Overview of PLC ladder diagram editing

The program editing method begins from the left busbar and proceeds to the right busbar (the right busbar is omitted when editing using WPLSoft). Continue to the next row after completing each row; there is a maximum of 11 contacts on each row. If this is not sufficient, a continuous line will be generated to indicate the continued connection and more devices can be added. A continuous series of numbers will be generated automatically and identical input points can be used repeatedly. See figure below:

The ladder diagram programming method involves scanning from the upper left corner to the lower right corner. The coils and applications command computing box are handled in the output, and the ladder diagram is placed on the farthest right. Taking the figure below as an example, we can gradually analyze the procedural sequence of the ladder diagram. The number in the upper right corner gives the sequential order.

Explanation of command sequence

- 6 LD T0
 - AND M3
 - ORB
- 7 ANB
- 8 OUT Y1
 - TMR T0 K10

Explanation of basic structure of ladder diagrams

LD (LDI) command: An LD or LDI command is given at the start of a block.

LDP and LDF have this command structure, but there are differences in their action state. LDP, LDF only act at the rising or falling edge of a conducting contact. (see figure below):

AND (ANI) command: A series configuration in which a single device is connected with one device or a block.

ANDP, ANDF also have structures like this, but their action occurs at the rising and falling edge.

OR (ORI) command: A single device is connected with one device or a block.

ORP, ORF also have identical structures, but their action occurs at the rising and falling edge.

ANB command: A configuration in which one block is in series with one device or block.

ORB command: A configuration in which one block is in parallel with one device or block.

In the case of ANB and ORB operations, if a number of blocks are connected, they should be combined to form a block or network from the top down or from left to right.

MPS, MRD, MPP commands: Branching point memory for multiple outputs, enabling multiple, different outputs. The MPS command begins at a branching point, where the so-called branching point refers to the intersection of horizontal and vertical lines. We have to rely on the contact status along a single vertical line to determine whether the next contact can give a memory command. While each contact is basically able to give memory commands, in view of convenience and the PLC's capacity restrictions, this can be omitted from some places when converting a ladder diagram. The structure of the ladder diagram can be used to judge what kinds of contact memory commands are used.

MPS can be distinguished by use of the " $_{T}$ " symbol; this command can be used consecutively for up to 8 times. The MRD command is read from branching point memory; because logic states along any one vertical line must be the same, in order to continue analysis of other ladder diagrams, the original contact status must be read.

MRD can be distinguished by use of the " \vdash " symbol. The MPP command is read from the starting state of the uppermost branching point, and it is read from the stack (pop); because it is the final command along a vertical line, it indicates that the state of the vertical line can be concluded. MPP can be distinguished by use of the "L" symbol. Although there should basically be no errors when using the foregoing analytical approach, the compiling program may sometimes omit identical state output, as shown in the following figure:

16-4-4 Commonly-used basic program design examples

Start, stop, and protection

Some applications may require a brief close or brief break using the buttons to start and stop equipment. A protective circuit, therefore, must be designed to maintain continued operation in these situations; this protective circuit may employ one of the following methods:

Example 1: Priority stop protective circuit

When the start NO contact X1=On, and the stop NC contact X2=Off, Y1=On; if X2=On at this time, coil Y1 will no longer be electrified, and this is therefore referred to as priority stop.

Example 2: Priority start protective circuit

When start NO contact X1=On, and the stop NC contact X2=Off, Y1=On, and coil Y1 will be electrified and protected. At this time, if X2=On, coil Y1 will still protect the contact and continue to be electrified, and this is therefore priority start.

Example 3: Setting (SET) and reset (RST) command protective circuit

The following figure shows a protective circuit composed of RST and SET commands.

Priority stop occurs when the RST command is placed after the SET command. Because the PLC executes programs from the top down, at the end of the program, the state of Y1 will indicate whether coil Y1 is electrified. When X1 and X2 are both actuated, Y1 will lose power, and this is therefore priority stop.

Priority start occurs when the SET command is placed after the RST command. When X1 and X2 are both actuated, Y1 will be electrified, and this is therefore priority start.

Commonly-used control circuits

Example 4: Conditional control

X1, X3 start/stop Y1 respectively. X2, X4 start/stop Y2 respectively. And all of these have protective circuits. Because Y1's NO contact is series connected with Y2's circuit, it becomes an AND condition for the actuation of Y2. The action of Y1 is therefore a condition for the actuated before Y2 can be actuated.

Example 5: Interlocking control

The figure below shows an interlocking control circuit. Depending on which of the start contacts X1, X2 is valid first, the corresponding output Y1 or Y2 will be actuated, and when one is actuated, the other will not be actuated. This implies that Y1 and Y2 cannot be actuated at the same time (interlocking effect). Even if both X1 and X2 are valid at the same time, because the ladder diagram program is scanned from the top down, it is impossible for Y1 and Y2 to be actuated at same time. This ladder diagram assigns priority only to Y1.

Example 6: Sequence control

If the NC contact of Y2 in the interlocking control configuration of example 5 is put in series with the Y1 circuit, so that it is an AND condition for actuation of Y1 (see figure below), not only is Y1 a condition for the actuation of Y2 in this circuit, the actuation of Y2 will also stop the actuation of Y1. This configuration confirms the actuation order of Y1 and Y2.

Example 7: Oscillating circuit

Oscillating circuit with a period of $\Delta T + \Delta T$

The figure below shows a very simple ladder diagram. When starting to scan the Y1 NC contact, because the Y1 coil has lost power, the Y1 NC contact will be closed. When the Y1 coil is then scanned, it will be electrified, and the output will be 1. When the Y1 NC contact is scanned in the scanning cycle, because Y1 coil is electrified, the Y1 NC contact will be open, the Y1 coil will then lose power, and the output will be 0. Following repeated scanning, the output of Y1 coil will have an oscillating waveform with a period of $\Delta T(On)+\Delta T(Off)$.

Oscillating circuit with a period of $nT+\Delta T$

The program of the ladder diagram shown below uses timer T0 to control coil Y1's electrified time. After Y1 is electrified, it causes timer T0 to close during the next scanning cycle, which will cause the output from Y1 to have the oscillating waveform shown in the figure below. Here n is the timer's decimal setting value, and T is the clock cycle of the timer.

Example 8: Flashing circuit

The following figure shows an oscillating circuit of a type commonly used to cause an indicator light to flash or buzzers to buzz. It uses two timers to control the On and Off time of Y1 coil. Here n1, n2 are the timing set values of T1 and T2, and T is the clock cycle of the timer.

Example 9: Triggering circuit

In the figure below, a command consisting of the differential of the rising edge of X0 causes coil M0 to generate a single pulse for ΔT (length of one scanning cycle), and coil Y1 is electrified during this scanning cycle. Coil M0 loses power during the next scanning cycle, and NC contact M0 and NC contact Y1 are both closed. This causes coil Y1 to stay in an electrified state until there is another rising edge in input X0, which again causes the electrification of coil M0 and the start of another scanning cycle, while also causing coil Y1 to lose power, etc. The sequence of these actions can be seen in the figure below. This type of circuit is commonly used to enable one input to perform two actions in alternation. It can be seen from the time sequence in the figure below that when input X0 is a square wave signal with a period of T, the output of coil Y1 will be a square wave signal with a period of 2T.

Example 10: Delay circuit

When input X0 is On, because the corresponding NC contact will be Off, the timer T10 will be in no power status, and output coil Y1 will be electrified. T10 will receive power and begin timing only after input X0 is Off, and output coil Y1 will be delayed for 100 sec. (K1000*0.1 sec. =100 sec.) before losing power; please refer to the sequence of actions in the figure below.

Example 11: The open/close delay circuit is composed of two timers; output Y4 will have a delay whether input X0 is On or Off.

Example 12: Extended timing circuit

In the circuit in the figure on the left, the total delay time from the moment input X0 closes to the time output Y1 is electrified is $(n1+n2)^{*}T$, where T is the clock cycle. Timers: T11, T12; clock cycle: T.

16-5 Various PLC device functions

Item	Specifications	Notes
Algorithmic control	Program stored internally, alternating	
Input/output control method	When it starts again after ending (after execution to the END command), the input/output has an immediate refresh command	
Algorithmic processing speed	Basic commands (several us);	Applications command (1-several tens of us)
Programming language	Command + ladder diagram	
Program capacity	10000 steps	
Input/output terminal	Input (X): 10, output (Y): 3	This number of contacts constitutes CP2000 input/output contacts; other devices have different correspondences

Туре	Device	lte	em	Range		Function	
	Х	K External input relay		X0~X17, 16 points, octal number	Total	Corresponds to external input point	
	Y	External ou	tput relay	Y0~Y17, 16 points, octal number	points	Corresponds to external output point	
	M	Auxiliary	General Use	M0~M799, 800 points	Total	Contact can switch On/Off within the	
Rel	IVI	Relay	Special purpose	M1000~M1079, 80 points	points	program	
ay bit form	т	Timer	100ms timer	T0~T159, 160 points	Total 160 points	Timers referred to by the TMR command; contact of the T with the same number will go On when the time is reached	
	С	Counter	16-bit counter, general use	C0~C79, 80 points	Total 80 points	Counter referred to by the CNT command; contact of the C with the same number will go On when the count is reached	
	Т	Current timer value		T0~T159, 160 points		The contact will be On when the time is reached	
Registe	С	Current counter value		C0~C79, 16-bit counter 80 points		The counter contact will come On when the count is reached	
er word		Data	Used to maintain power Off	D0~D399, 400 points	Total 1400 points		
data	D	Register	Special purpose	D1000~D1199, 200 points D2000~D2799, 800 points		memory area	
			Single-byte	Setting Range: K-32,768 ~	nge: K-32,768 ~ K32,767		
Constant	K Decimal Double- byte		Double- byte	Setting Range: K-2,147,483,648~K2,147,483,647		-K2,147,483,647	
Considiit		Hevadeci	Single-byte	Setting Range:H0000 ~ HFFFF			
	Hexadeci Mal Double- byte		Double- byte	Setting Range: H00000000 ~ HFFFFFFF			

Type Device	Item		Range	Function
Serial communications port (program write/read)			RS-485/keypad port	
Input/ou	ıtput		Built-in three analog inputs and tw	vo analog outputs
Function expansion r	nodule A	Optional ccessori es	EMC-D42A; EMC-R6AA; EMCD6	011A
Communication Expa Module	ansion A	Optional ccessori es	EMC-COP01,(CANOpen)	

16-5-1 Introduction to device functions

Input/output contact functions

Input contact X functions: Input contact X is connected with an input device, and reads input signals entering the PLC. The number of times that contact a or b of input contact X is used in the program is not subject to restrictions. The On/Off state of input contact X will change as the input device switches On and Off; a peripheral device (WPLSoft) cannot be used to force contact X On or Off.

Output contact Y functions

The job of output contact Y is to send an On/Off signal to drive the load connected with output contact Y. Output contacts consist of two types: relays and transistors. While number of times that contact a or b of each output contact Y is used in the program is not subject to restrictions, it is recommended that the number of output coil Y be used only once in a program, otherwise the right to determine the output state when the PLC performs program scanning will be assigned to the program's final output Y circuit.

The output of Y0 will be decided by circuit ${\ensuremath{ @ \hspace{-.65mm} \ensuremath{ > \hspace{ -.65mm} \ensuremath{ > \hspace{ - \ensuremath{ > \hspace{ -.65mm} \ensuremath{ > \hspace{ -.65mm} \ensuremath{ > \hspace{ - \ensuremath{ > \hspace{ - \ensuremath{ > \hspace{ - \ensuremath{ > \hspace{ -.65$

Numerical value, constant [K]/[H]

Constant	Single-byte	ĸ	Decimal	K-32,768 ~ K32,767
	Double-byte	N		K-2,147,483,648~K2,147,483,647
	Single-byte	Ц	Hovedooimel	H0000 ~ HFFFF
	Double-byte	п	пехацесипа	H0000000 ~ HFFFFFF

The PLC can use five types of numerical values to implement calculations based on its control tasks; the following is an explanation of the missions and functions of different numerical values.

Binary Number, BIN

The PLC's numerical operations and memory employ binary numbers. Binary nibbles and relevant terms are explained as follows:

Bit	Bits are the fundamental units of binary values, and have a state of either 1 or 0
Nibble	Comprised of a series of 4 bits (such as b3-b0); can be used to express a one-nibble decimal number 0-9 or hexadecimal number: 0-F.
Byte	Comprised of a series of two nibbles (i.e. 8 bits, b7-b0); can express a hexadecimal number: 00-FF.
Word	Comprised of a series of two bytes (i.e. 16 bits, b15-b0); can express a hexadecimal number with four nibbles: 0000-FFFF.
Double Word	Comprised of a series of two words (i.e. 32 bits, b31-b0); can express a hexadecimal number with eight nibbles: 00000000-FFFFFFFF

Relationship between bits, digits, nibbles, words, and double words in a binary system (see figure below):

Octal Number, OCT

The external input and output terminals of a DVP-PLC are numbered using octal numbers Example: External input: X0~X7 , X10~X17...(Device number table); External output: Y0~Y7 , Y10~Y17...(Device number table)

Decimal Number, DEC

Decimal numbers are used for the following purposes in a PLC system:

- ☑ The setting values of timer T or counter C, such as TMR C0 K50. (K constant)
- ☑ The numbers of devices including M, T, C, or D, such as M10 or T30. (device number)
- ☑ Used as a operand in an application command, such as MOV K123 D0. (K constant)

Binary Code Decimal, BCD

Uses one nibble or 4 bits to express the data in a decimal number; a series of 16 bits can therefore express a decimal number with 4 nibbles. Chiefly used to read the input value of a fingerwheel numerical switch input or output a numerical value to a seven-segment display driver.

Hexadecimal Number, HEX

Applications of hexadecimal numbers in a PLC system: Used as operands in application commands, such as MOV H1A2B D0. (H constant)

Constant K

Decimal numbers are usually prefixed with a "K" in a PLC system, such as K100. This indicates that it is a decimal number with a numerical value of 100.

Exceptions: K can be combined with bit device X, Y, M, or S to produce data in the form of a nibble, byte, word, or double word, such as in the case of K2Y10 or K4M100. Here K1 represents a 4-bit combination, and K2-K4 variously represent 8-, 12-, and 16-bit combinations.

Constant H

Hexadecimal numbers are usually prefixed with the letter "H" in a PLC system, such as in the case of H100, which indicates a hexadecimal number with a numerical value of 100.

Functions of auxiliary relays

Like an output relay Y, an auxiliary relay M has an output coil and contacts a and b, and the number of times they can be used in a program is unrestricted. Users can use an auxiliary relay M to configure the control circuit, but cannot use it to directly drive an external load. Auxiliary relays have the following two types of characteristics:

Ordinary auxiliary relays: Ordinary auxiliary relays will all revert to the Off state if a power outage occurs while the PLC is running, and will remain in the Off state if power is again turned down.

Special purpose auxiliary relays: Each special purpose auxiliary relay has its own specific use. Do not use any undefined special purpose auxiliary relays.

Timer functions

Timers take 100 ms as their timing units. When the timing method is an upper time limit, when the current timer value = set value, power will be sent to the output coil. Timer setting values consist of decimal K values, and the data register D can also serve as a setting value.

Actual timer setting time = timing units * set value

Item	16-bit counter
Туре	General Type
CT Direction:	Score:
Setting	0~32,767
Designation of set value	Constant K or data register D
Change in current	When the count reaches the set value, there is no
value	longer a count
Output contact	When the count reaches the set value, the contact comes On and stays On
Reset	The current value reverts to 0 when an RST command is executed, and the contact reverts to Off
Contact actuation	All are actuated after the end of scanning

Counter features

Counter functions

When a counter's counting pulse input signal goes $Off \rightarrow On$, if the counter's current value is equal to the set value, the output coil will come On. The setting value will be a decimal K values, and the data register D can also serve as a setting value.

16-bit counter C0-C79:

- ☑ 16-bit counter setting range: K0-K32,767. (when K0 and K1 are identical, the output contact will immediately be On during the first count.)
- ☑ The current counter value will be cleared from an ordinary counter when power is shut off to the PLC.
- ☑ If the MOV command or WPLSoft is used to transmit a value greater than the set value to the C0 current value register, when the next X1 goes from Off→On, the C0 counter contact will change to On, and the current value will change to the set value.
- ☑ A counter's setting value may be directly set using a constant K or indirectly set using the value in register D (not including special data registers D1000- D1199 or D2000 ~ D2799).
- ☑ If the set value employs a constant K, it may only be a positive number; the set value may be either a positive or a negative number if the value in data register D is used. The current counter value will change from 32,767 to -32,768 as the count continues to accumulate.

Example

- When X0=On and the RST command is executed, the current value of C0 will revert to 0, and the output contact will revert to Off.
- When X1 changes from Off→On, the current value of the counter will execute an increase (add one).
- When the count of counter C0 reaches the set value K5, the contact C0 will come On, and the current value of C0= set value =K5. Afterwards, signal C0 triggered by X1 cannot be received, and the current value of C0 will remain K5.

16-5-2 Introduction to special relay functions (special M)

R/W items: RO: read only function; RW: read and write function

Special M	Description of Function	R/W *
M1000	Operates monitor NO contact (contact a). NO while RUN, contact a. This contact is On while in the RUN state.	RO
M1001	Operates monitor NC contact (contact b). NC while RUN, contact b. This contact is Off while in the RUN state.	RO
M1002	Initiates a forward (the instant RUN is On) pulse. Initial pulse, contact a. Produces a forward pulse the moment RUN begins; its width = scan cycle	RO
M1003	Initiates a reverse (the instant RUN is Off) pulse. Initial pulse, contact a. Produces a reverse pulse the moment RUN ends; the pulse width = scan cycle	RO
M1004	Reserved	RO
M1005	Driver malfunction instructions	RO
M1006	Converter has no output	RO
M1007	Driver direction FWD(0)/REV(1)	RO
M1008		
~		
M1010		
M1011	10 ms clock pulse · 5ms On/5ms Off	RO
M1012	100 ms clock pulse 🤄 50ms On / 50ms Off	RO
M1013	1 sec. clock pulse , 0.5s On / 0.5s Off	RO
M1014	1 min. clock pulse 30s On / 30s Off	RO
M1015	Frequency attained (when used together with M1025)	RO
M1016	Parameter read/write error	RO
M1017	Parameter write successful	RO
M1018		
M1019		
M1020	Zero flag	RO
M1021	Borrow flag	RO
M1022	Carry flag	RO
M1023	Divisor is 0	RO
M1024		
M1025	Driver frequency = set frequency (ON) Driver frequency =0(OFF)	RW
M1026	Driver operating direction FWD(OFF)/REV(ON)	RW
M1027	Driver Reset	RW
M1028		
M1029		
M1030		
M1031	Compulsory setting of the current PID integral value equal to D1019 (0 change, 1 valid)	RW
M1032	Compulsory definition of FREQ command after PID control	RW
M1033		
M1034	Initiates CANopen real-time control	RW
M1035	Initiates internal communications control	RW
M1036	Ignore calendar error	RW
M1037		
M1038		
M1039		
M1040	Hardware power (Servo On)	RW
M1041		
M1042	Quick stop	RW

M	
M1043	
M1044 Pause (Halt)	RW
M1045	
~	
M1047	
M1048	
M1049	
M1050	
M1051	
M1052 Lock frequency (lock, frequency locked at the current operating frequency)	RW
M1053	
M1054	
M1055	
M1056 Hardware already has power (Servo On Ready)	RO
M1057	
M1058 On Quick Stopping	RO
M1059 CANopen Master setting complete	RO
M1060 CANopen Currently initializing slave station	RO
M1061 CANopen Slave station initialization failure	RO
M1062	
M1063	
M1064	
M1065 Read/write CANOpen data time out	RO
M1066 Read/write CANopen data complete	RO
M1067 Read/write CANopen data successful	RO
M1068 Calendar calculation error	RO
M1069	
M1070	
M1071	
M1072	
~	
M1075	
M1076 Calendar time error or refresh time out	RO
M1077 485 Read/write complete	RO
M1078 485 Read-write error	RO
M1079 485 Communications time out	RO
M1260 PLC PID1 Enable	RW
M1262 PLC PID1 Positive integral value limit	RW
M1270 PLC PID2 Enable	RW
M1272 PLC PID2 Positive integral value limit	RW

16-5-3 Introduction to special register functions (special D)

Special	Description of Function	R/W *
D1000		
D1000	 Device evetem program version	
D1001	Device system program version	
D1002	Total program memory content	
D1003		NO
01004		
D1009		
D1010	Current scan time (units: 0.1 ms)	RO
D1011	Minimum scan time (units: 0.1 ms)	RO
D1012	Maximum scan time (units: 0.1 ms)	RO
D1013		
~		
D1017		
D1018	Current integral value	RO
D1019	Compulsory setting of PID I integral	RW
D1020	Output frequency (0.00~600.00Hz)	RO
D1021	Output current (####.#A)	RO
	AI AO DI DO Expansion card number	
	0 ∶ No expansion card	
D1022	4:AC input card (6 in)(EMC-D611A)	RO
	5:I/O Card(4 in 2 out)(EMC-D42A)	
	6:Relay card(6 out) (EMC-R6AA)	
	Communication expansion card number	
	0 : No expansion card	
	1 : DeviceNet Slave	
D1023	2 : Profibus-DP Slave	RO
01020	3 : CANopen Slave	NO
	4 · Modbus-TCP Slave	
	5 : EtherNet/ID Slave	
D1004		
01024		
D1026		
D1020	PID calculation frequency command (frequency command after PID calculation)	RO
D1027	AV/11value (0.00~100.00%)	RO
D1029	ACI value (0.0~100.00%)	RO
D1030	AVI2 value (0.00~100.00%)	RO
D1031		
~		
D1035		
D1036	Servo error bit	RO
D1037	Driver output frequency	RO
D1038	DC BUS voltage	RO
D1039	Output voltage	RO
D1040	Analog output value AFM1(-100.00~100.00%)	RW
D1041		
~		
D1042		
D10/13	Can be user-defined (will be displayed on panel when parameter 00-04 is set as	RW
	28; display method is C xxx)	
D1044		-

Special	Description of Function	R/W *
	$\frac{1}{100000}$	
D1045	Analog output value AFM2(-100.00~100.00%)	RW
D1046		
D1049	Actual Operation Mode	
D1050		RO
D1051		
D1051		
D1052		
D1053		
D1054		
D1055		
D1057		
D1058		
D1050		
D1000	Operation Mode setting	
D1060	0 : Sneed	RW
D1061	485 COM1 communications time out time (ms)	RW/
D1001	Torque command (torque limit in speed mode)	RW/
D1062	Vear (Western calendar) (display range 2000 2000) (must use KPC CC01)	RO
D1003	Week (display range 1.7) (must use KPC CC01)	
D1004	Month (display range 1.12) (must use KPC-CC01)	
D1005	Day (display range 1.31) (must use KPC-CC01)	
D1000	Hour (display range 0.22) (must use KPC-CC01)	
D1007	Minute (display range 0.50) (must use KPC-CC01)	
D1000	Second (display range 0.59) (must use KPC-CC01)	
D1009	Target frequency	RO
D1100	Target frequency (must be operating)	RO
D1102	Reference frequency	RO
D1103		
D1104		
D1105		
D1106		
D1107	π(Pi) Low word	RO
D1108	π(Pí) High word	RO
D1109	Random number	RO
D1110	Internal node communications number (set number of slave stations to be	
DIIIU	controlled)	RVV
D1111		
D1112		
D1113		
D1114		
D1115	Internal node synchronizing cycle (ms)	RO
D1116	Internal node error (bit0 = Node 0, bit1 = Node 1,bit7 = Node 7)	RO
D1117	Internal node online correspondence (bit0 = Node 0, bit1 = Node 1,bit7 = Node	RO
D1119		
D1110		
D1120	 Internal node 0 control command	 D\\/
D1120	Internal node 0 control command	
D1121	Internal node 0 mode	R\//
D1122	Internal node 0 reference command H	R\//
D1124		
D1124	 	
D1120	Internal node 0 status	 RO

Special D	Description of Function	R/W *
D1127	Internal node 0 reference status L	RO
D1128	Internal node 0 reference status H	RO
D1129		
D1130	Internal node 1 control command	RW
D1131	Internal node 1 mode	RW
D1132	Internal node 1 reference command L	RW
D1133	Internal node 1 reference command H	RW
D1134		
D1135		
D1136	Internal node 1 status	RO
D1137	Internal node 1 reference status L	RO
D1138	Internal node 1 reference status H	RO
D1139		
D1140	Internal node 2 control command	RW
D1141	Internal node 2 mode	RW
D1142	Internal node 2 reference command L	RW
D1143	Internal node 2 reference command H	RW
D1144		
D1145		
D1146	Internal node 2 status	RO
D1147	Internal node 2 reference status L	RO
D1148	Internal node 2 reference status H	RO
D1149		
D1150	Internal node 3 control command	RW
D1151	Internal node 3 mode	RW
D1152	Internal node 3 reference command L	RW
D1153	Internal node 3 reference command H	RW
D1154		
D1155		
D1156	Internal node 3 status	RO
D1157	Internal node 3 reference status L	RO
D1158	Internal node 3 reference status H	RO
D1159		
D1160	Internal node 4 control command	RW
D1161	Internal node 4 mode	RW
D1162	Internal node 4 reference command L	RW
D1163	Internal node 4 reference command H	RW
D1164		
D1165		
D1166	Internal node 4 status	RO
D1167	Internal node 4 reference status L	RO
D1168	Internal node 4 reference status H	RO
D1169		
D1170	Internal node 5 control command	RW
D1171	Internal node 5 mode	RW
D1172	Internal node 5 reference command L	RW
D1173	Internal node 5 reference command H	RW
D1174		RW
D1175		
D1176	Internal node 5 status	
D1177	Internal node 5 reference status L	RO
D1178	Internal node 5 reference status H	RO
D1179		
D1180	Internal node 6 control command	RW

Special D	Description of Function	R/W *
D1181	Internal node 6 mode	RW
D1182	Internal node 6 reference command L	RW
D1183	Internal node 6 reference command H	RW
D1184		
D1185		
D1186	Internal node 6 status	RO
D1187	Internal node 6 reference status L	RO
D1188	Internal node 6 reference status H	RO
D1189		
D1190	Internal node 7 control command	RW
D1191	Internal node 7 mode	RW
D1192	Internal node 7 reference command L	RW
D1193	Internal node 7 reference command H	RW
D1194		
D1195		
D1196	Internal node 7 status	RO
D1197	Internal node 7 reference status L	RO
D1198	Internal node 7 reference status H	RO
D1199		

Special D	Description of Function	R/W*	Default
D1200	PID1 mode: 0: Basic mode 1: Main frequency offset 2: Temperature mode	RW	0
D1201	PID1 target selection: 0: Refer to D1202 1: AVI1 2: ACI 3: AVI2	RW	0
D1202	PID1 target value (0.00%~100.00%)	RW	5000
D1203	PID1 feedback selection 0: Refer to D1204 1: AVI1 2: ACI 3: AVI2	RW	1
D1204	PID1 feedback value (0.00%~100.00%)	RW	0
D1205	PID1 P value (decimal point 2)	RW	10
D1206	PID1 I value (decimal point 2)	RW	1000
D1207	PID1 D value (decimal point 2)	RW	0
D1208	Forced reference of PID1 integral value	RW	0
D1209	Max. limit of PID1	RW	10000
D1215	Counting value of PID1 (decimal point 2)	RO	0
D1220	PID2 mode: 0: Basic mode 1: Main frequency offset 2: Temperature mode	RW	0
D1221	D1221 1: AVI1 2: ACI 3: AVI2		0
D1222	PID2 target value (0.00%~100.00%)	RW	5000
D1223	PID2 feedback selection 0: Refer to D1204	RW	1

Special D	Description of Function	R/W*	Default
	1: AVI1		
	2: ACI		
	3: AVI2		
D1224	PID2 feedback value (0.00%~100.00%)	RW	0
D1225	PID1 P value (decimal point 2)	RW	10
D1226	PID2 I value (decimal point 2)	RW	1000
D1227	PID2 D value (decimal point 2)	RW	0
D1228	Forced reference of PID2 integral value	RW	0
D1229	Max. limit of PID2	RW	10000
D1235	Counting value of PID2 (decimal point 2)	RO	0

The following is CANopen Master's special D (can be written in only

with PLC in Stop state)

n = 0 ~ 7

Special D	Description of Function	PDO Map	Power off Memory	Default:	R/W
D1070	Channel opened by CANopen initialization (bit0=Machine code0)	NO	NO	0	R
D1071	Error channel occurring in CANopen initialization process (bit0=Machine code0)	NO	NO	0	R
D1072	Reserved	-	-		-
D1073	CANopen break channel (bit0=Machine code0)	NO	NO		R
D1074	Error code of master error 0: No error 1: Slave station setting error 2: Synchronizing cycle setting error (too small)	NO	NO	0	R
D1075	Reserved	-	-		-
D1076	SDO error message (main index value)	NO	NO		R
D1077	SDO error message (secondary index value)	NO	NO		R
D1078	SDO error message (error code)	NO	NO		R
D1079	SDO error message (error code)	NO	NO		R
D1080	Reserved	-	-		-
D1081					-
~ D1086	Reserved	-	-		
D1087 ~ D1089	Reserved	-	-		-
D1090	Synchronizing cycle setting	NO	YES	4	RW
D1091	Sets slave station On or Off (bit 0-bit 7 correspond to slave stations number 0-7)	NO	YES	FFFFH	RW
D1092	Delay before start of initialization	NO	YES	0	RW
D1093	Break time detection	NO	YES	1000ms	RW
D1094	Break number detection	NO	YES	3	RW
D1095	Reserved	-	-		-
D1096					
D1097	Corresponding real-time transmission type (PDO) Setting range: 1~240		YES	1	RW
D1098	Corresponding real-time receiving type (PDO) Setting range: 1~240	NO	YES	1	RW
D1099	Initialization completion delay time Setting range: 1 to 60000 sec	NO	YES	15 sec.	RW

Special D	Description of Function	PDO Map	Power off Memory	Default:	R/W
D2000+100*n	Station number n of slave station Setting range: 0~127 0: No CANopen function	NO	YES	0	RW

The CP2000 supports 8 slave stations under the CANopen protocol; each slave station

occupies 100 spe	cial D locations;	stations are n	umbered 1-8, total of 8 stations.
Explanation of slave station number	Slave station no. 1	D2000 D2001 ~ D2099	Node ID Slave station no. 1 torque restrictions ~ Address 4(H) corresponding to receiving
	Slave station no. 2	D2100 D2101 ~	Node ID Slave station no. 2 torque restrictions ~
	Slave station no. 3	D2199 D2200 D2201 ~	Address 4(H) corresponding to receiving channel 4 Node ID Slave station no. 3 torque restrictions ~
	Slave station no. 8	D2299 D2700 D2701 ~ D2799	Address 4(H) corresponding to receiving channel 4 Node ID Slave station no. 8 torque restrictions ~ Address 4(H) corresponding to receiving
		22700	channel 4

- 1. The range of n is 0~7
- 2. ●Indicates PDOTX, ▲Indicates PDORX; unmarked special D can be refreshed using the CANFLS command

Special D	Description of Function	Default:	R/W
D2000+100*n	Station number n of slave station Setting range: 0~127	0	RW
D2002+100*p	U: NO CANOPER function	0	D
D2002+100 11		0	<u> </u>
D2003+100*n	Manufacturer code of slave station number n (H)	0	R
D2004+100*n	Manufacturer's product code of slave station number n (L)	0	R
D2005+100*n	Manufacturer's product code of slave station number n (H)	0	R

Basic definitions

Special D	Description of Eurotion	Default	CAN	PDO		DO Default:			
Special D		Delault.	Index	1	2	3	4	F./ V V	
D2006+100*p	Communications break handling method of	0	60070 00100						
D2000+100 11	slave station number n	0	0007 -0010						
D2007+100*n	100*n Error code of slave station number n error		603FH-0010H					R	
D2008+100*n	Control word of slave station number n	0	6040H-0010H	•		•	•	RW	
D2009+100*n	100*n Status word of slave station number n		6041H-0010H					R	
D2010+100*n	2010+100*n Control mode of slave station number n		6060H-0008H					RW	
D2011+100*n	Actual mode of slave station number n	2	6061H-0008H					R	

Velocity Control

Slave station number n=0~7

Special D	Description of Eurotion	Dofault: CAN		PD	ault:	D/M		
Special D		Delault.	Index	1	2	3	4	
D2001+100*n	Torque restriction on slave station number n		6072H-0010H					RW
D2012+100*n	n Target speed of slave station number n		6042H-0010H	•				RW
D2013+100*n	Actual speed of slave station number n		6043H-0010H					R
D2014+100*n	Error speed of slave station number n	0	6044H-0010H					R
D2015+100*n	Acceleration time of slave station number n		604FH-0020H					R
D2016+100*n	Deceleration time of slave station number n		6050H-0020H					RW

Torque control

Slave station number n=0~7

Special D	Description of Eurotion	perintion of Eurotian Defaults		PD	00	Def	ault:	DAA
Special D	Description of Function	Delault.	Index	1	2	3	4	R/VV
D2017+100*n	Target torque of slave station number n	0	6071H-0010H				•	RW
D2018+100*n	n Actual torque of slave station number n		6077H-0010H					R
D2019+100*n	Actual current of slave station number n	0	6078H-0010H					R

20XXH correspondences: MI MO AI AO

Slave station number n=0~7

Special D	Description of Eurotion	Default	CAN	PD	00	Defa	ault:	
Special D		Delault.	Index	1	2	3	4	Γ./ ٧ ٧
D2026+100*n	MI status of slave station number n	0	2026H-0110H					RW
D2027+100*n	MO setting of slave station number n	0	2026H-4110H		•			RW
D2028+100*n	2028+100*n Al1 status of slave station number n		2026H-6110H					RW
D2029+100*n	0*n AI2 status of slave station number n		2026H-6210H					RW
D2030+100*n	00*n AI3 status of slave station number n		2026H-6310H					RW
D2031+100*n	1+100*n AO1 status of slave station number n		2026H-A110H		•			RW
D2032+100*n	AO2 status of slave station number n	0	2026H-A210H		•			RW
D2033+100*n	AO3 status of slave station number n	0	2026H-A310H		•			RW

PDO reflection length setting:

Special D	Description of Function	Default:	R/W
D2034+100*n	Real-time transmission setting of slave station number n	000AH	RW
D2067+100*n	Real-time reception setting of slave station number n	0000H	RW

16-5-4 PLC Communication address

Device	Range	Туре	Address (Hex)
Х	00~37 (Octal)	bit	0400~041F
Y	00~37 (Octal)	bit	0500~051F
Т	00~159	bit/word	0600~069F
М	000~799	bit	0800~0B1F
М	1000~1079	bit	0BE8~0C37
С	0~79	bit/word	0E00~0E47
D	00~399	word	1000~118F
D	1000~1198	word	13E8~144B
D	2000~2799	word	17D0~1AEF

Function Code	Description of Function	Function target
01	Coil status read	Y,M,T,C
02	Input status read	X,Y,M,T,C
03	Read single unit of data	T,C,D
05	Compulsory single coil status change	Y,M,T,C
06	Write single unit of data	T,C,D
0F	Compulsory multiple coil status change	Y,M,T,C
10	Write multiple units of data	T,C,D

When PLC functions have been activated, the CP2000 can match PLC and driver parameters; this method employs different addresses, drivers (default station number is 1, PLC sets station number as 2)

16-6 Introduction to the Command Window

16-6-1 Overview of basic commands

Ordinary commands

Command code	Function	OPERAND	Execution speed (us)
LD	Load contact a	$X \mathrel{\scriptstyle{\checkmark}} Y \mathrel{\scriptstyle{\vee}} M \mathrel{\scriptstyle{\vee}} T \mathrel{\scriptstyle{\vee}} C$	0.8
LDI	Load contact b	$X \mathrel{\scriptstyle{\checkmark}} Y \mathrel{\scriptstyle{\vee}} M \mathrel{\scriptstyle{\vee}} T \mathrel{\scriptstyle{\vee}} C$	0.8
AND	Connect contact a in series	$X \mathrel{\scriptstyle{\checkmark}} Y \mathrel{\scriptstyle{\vee}} M \mathrel{\scriptstyle{\vee}} T \mathrel{\scriptstyle{\vee}} C$	0.8
ANI	Connect contact b in series	$X \mathrel{\scriptstyle{}} Y \mathrel{\scriptstyle{}} M \mathrel{\scriptstyle{}} T \mathrel{\scriptstyle{}} C$	0.8
OR	Connect contact a in parallel	$X \mathrel{\scriptstyle{\checkmark}} Y \mathrel{\scriptstyle{\vee}} M \mathrel{\scriptstyle{\vee}} T \mathrel{\scriptstyle{\vee}} C$	0.8
ORI	Connect contact b in parallel	$X \mathrel{\scriptstyle{}} Y \mathrel{\scriptstyle{}} M \mathrel{\scriptstyle{}} T \mathrel{\scriptstyle{}} C$	0.8
ANB	Series circuit block	N/A	0.3
ORB	Parallel circuit block	N/A	0.3
MPS	Save to stack	N/A	0.3
MRD	Stack read (pointer does not change)	N/A	0.3
MPP	Read stack	N/A	0.3

Output command

Command code	Function	OPERAND	Execution speed (us)
OUT	Drive coil	Y ∘ M	1
SET	Action continues (ON)	Y ∘ M	1
RST	Clear contact or register	$Y \cdot M \cdot T \cdot C \cdot D$	1.2

Timer, counter

Command code	Function	OPERAND	Execution speed (us)
TMR	16-bit timer	T-K or T-D commands	1.1
CNT	16-bit counter	C-K or C-D (16-bit)	0.5

Main control command

Command code	Function	OPERAND	Execution speed (us)
MC	Common series contact connection	N0~N7	0.4
MCR	Common series contact release	N0~N7	0.4

Contact rising edge/falling edge detection command

Command code	Function	OPERAND	Execution speed (us)
LDP	Start of forward edge detection action	$X \mathrel{\scriptstyle{\checkmark}} Y \mathrel{\scriptstyle{\vee}} M \mathrel{\scriptstyle{\vee}} T \mathrel{\scriptstyle{\vee}} C$	1.1
LDF	Start of reverse edge detection action	$X \mathrel{\scriptstyle{\checkmark}} Y \mathrel{\scriptstyle{\vee}} M \mathrel{\scriptstyle{\vee}} T \mathrel{\scriptstyle{\vee}} C$	1.1
ANDP	Forward edge detection series connection	$X \mathrel{\scriptstyle{\checkmark}} Y \mathrel{\scriptstyle{\vee}} M \mathrel{\scriptstyle{\vee}} T \mathrel{\scriptstyle{\vee}} C$	1.1
ANDF	Reverse edge detection series connection	$X \mathrel{\scriptstyle{\checkmark}} Y \mathrel{\scriptstyle{\vee}} M \mathrel{\scriptstyle{\vee}} T \mathrel{\scriptstyle{\vee}} C$	1.1
ORP	Forward edge detection parallel connection	$X \mathrel{\scriptstyle{\checkmark}} Y \mathrel{\scriptstyle{\vee}} M \mathrel{\scriptstyle{\vee}} T \mathrel{\scriptstyle{\vee}} C$	1.1
ORF	Reverse edge detection parallel connection	$X \cdot Y \cdot M \cdot T \cdot C$	1.1

Upper/lower differential output commands

Command code	Function	OPERAND	Execution speed (us)
PLS	Upper differential output	Y∘M	1.2
PLF	Lower differential output	У N	1.2

Stop command

Command code	Function	OPERAND	Execution speed (us)
END	Program conclusion	N/A	0.2

Other commands

Command code	Function	OPERAND	Execution speed (us)
NOP	No action	N/A	0.2
INV	Inverse of operation results	N/A	0.2
Р	Index	Р	0.3

16-6-2 Detailed explanation of basic commands

Command	Function								
LD	Load contact a	Load contact a							
Oranamad	X0~X17	Y0~Y17	M0~M799	T0~159	0	C0~C79	D0~	D399	
Operand	✓	✓	✓	\checkmark		\checkmark		_	
Explanation The LD command is used for contact a starting at the left busbar or contact a starting at a contact circuit block; its function is to save current content and save the acquired contact status in the cumulative register									
Example	Ladder diagra	m:	5	Command	code:	Des	scriptio	n:	
		(1	Y1)	LD	X0	Load Cor	ntact a	of X0	
				AND	X1	Create connection of X1	on to co	series ontact a	
				OUT	Y1	Drive Y1	coil		

Command	Function								
LDI	Load contact l	Load contact b							
Orestand	X0~X17	Y0~Y17	M0~M799	T0~159		C0~C79	D0~D399)	
Operand	✓	✓	✓	\checkmark		\checkmark	_		
Explanation The LDI command is used for contact b starting at the left busbar or contact b starting at a contact circuit block; its function is to save current content and save the acquired contact status in the cumulative register									
Example	Ladder diagra	m:	<u>-</u>	Command code: Description:			cription:		
		(1 (Y1)	LDI	X0	Load Cor	tact b of X0	1	
				AND	X1	Create connection of X1	serio n to contact	es t a	
				OUT	Y1	Drive Y1	coil		

Command	Function						
AND	Connect conta	act a in series					
Orestand	X0~X17	Y0~Y17	M0~M799	T0~159)	C0~C79	D0~D399
Operand	✓	\checkmark	✓	✓		\checkmark	—
Explanation The AND command is used to create a series connection to contact a; first reads current status of the designated series contact and logical operation results before contact in order to perform "AND" operation; saves results in cumulative register.							
Example	Ladder diagra	m: 0		Commano LDI	d code X1	: Des Load Cor	scription: ntact b of X1
			AND	X0	Create connectio of X0	series on to contact a	
				OUT	Y1	Drive Y1	coil
Command	Command Function						
ANI	Connect conta	act b in series					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159)	C0~C79	D0~D399
Operand	✓	\checkmark	✓	✓		\checkmark	_
Explanation	The ANI comm first read curre before contac register.	nand is used to ent status of th t in order to	o create a serie le designated : perform "ANE	es connecti series conti D" operatio	ion to act an n; sav	contact b; it d logical op /es results	s function is to eration results in cumulative
Example	Ladder diagra	m:		Commano	d code	: Des	scription:
		.0	Y1)	LD	X1	Load Cor	tact a of X1
				ANI	X0	Create connectic of X0	series on to contact b
				OUT	Y1	Drive Y1	coil
Command			Fun	ction			
OR	Connect conta	act a in parallel					

	Connect conta	act a in paralle				
Onerend	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
Operand	✓	\checkmark	✓	\checkmark	 ✓ 	—
	The OR comm	nand is used to	establish a pa	rallel connecti	on to contact a	; its function is
Explanation	to first read of	current status	of the design	ated series co	ontact and log	ical operation
	results before	contact in ord	er to perform "	OR" operation	; saves results	in cumulative
	register.					
Example	Ladder diagra	m:		Command co	ode: Des	scription:
		(Y1)	LD X	0 Load Cor	ntact a of X0
	X1			OR X	Create Create	series on to contact a
					OT X1	

Y1

Drive Y1 coil

OUT

Command			Fun	otion				
Command								
ORI	Connect conta	ict b in paralle						
Onerend	X0~X17	Y0~Y17	M0~M799	T0~159		C0~C79	D0~D399	
Operand	✓	\checkmark	✓	\checkmark		\checkmark	—	
	The ORI comr	mand is used t	to establish a p	parallel con	nection	to contact	b; its function	
	is to first read	current statu	s of the desig	nated serie	es conta	act and loc	ical operation	
Explanation	results before	contact in ord	er to perform "	OR" opera	tion: sa	ves results	in cumulative	
	register.				,			
	Ladder diagra	m:		Comman	d code:	Des	scription:	
Example	X0		\frown					
		(—(Y1)	LD	X0	Load Cor	ntact a of X0	
	¥1					Create	series	
				ORI	X1	connectio	n to contact b	
				••••	<i>7</i> .	of X1		
				OUT	Y1	Drive Y1	coil	
Command			Fund	ction				
ANB	Series circuit b	olock						
Operand			N	/A				
Explanation	ANB performs	an "AND" ope	eration on the p	orevious sa	ved log	ic results a	nd the current	

Explanation cumulative register content. Example X0 ANB X1 V1 V1

Command	code:	Description:
LD	X0	Load Contact a of X0
ORI	X2	Establish parallel connection to contact b of X2
LDI	X1	Load Contact b of X1
OR	X3	Establish parallel connection to contact a of X3
ANB		Series circuit block
OUT	Y1	Drive Y1 coil

Command			Fund	ction		
ORB	Parallel circuit blo	ck				
Operand			N/	A		
Explanation	ORB performs an cumulative register	"OR" operation or er content.	i the pi	revious sav	ed logi	c results and the current
	Ladder diagram:			Command	code:	Description:
Example	X0	X1 Block A		LD	X0	Load Contact a of X0
		-/(Y1)				Establish parallel
				ANI	X1	connection to contact b
	X2					of X1
			URB	LDI	X2	Load Contact b of X2
		BIOCK B				Establish parallel
				AND	X3	connection to contact a
						of X3
				ORB		Parallel circuit block
				OUT	Y1	Drive Y1 coil

Command	Function
MPS S	Save to stack
Operand	N/A

Explanation Save current content of cumulative register to the stack. (Add one to stack pointer)

Command	Function						
MRD	Read stack (pointer does not change)						
Operand	N/A						
Explanation	Reads stack content and saves to cumulative register. (Stack pointer does not change)						

Command	Function									
MPP	Read stack									
Operand	N/A									
Explanation	Retrieves result of previously-save logical cumulative register. (Subtract one from state	Retrieves result of previously-save logical operation from the stack, and saves to cumulative register. (Subtract one from stack pointer)								
E vernle	Ladder diagram:	Comman	d code:	Description:						
	MPS	LD	X0	Load Contact a of X0						
	. X0 4 X1	MPS		Save to stack						
		AND	X1	Create series connection to contact a of X1						
		OUT	Y1	Drive Y1 coil						
		MRD		Read stack (pointer does not change)						
	Y2	AND	X2	Create series connection to contact a of X2						
		OUT	M0	Drive M0 coil						
	END	MPP		Read stack						
		OUT	Y2	Drive Y2 coil						
		END		Program conclusion						

Command			Fund	ction							
OUT	Drive coil	Drive coil									
Onerend	X0~X17	Y0~Y17	M0~M799	T0~159 (C0~C79	D0~D399				
Operand	—	\checkmark	✓	—		—	—				
Explanation	Outputs result o Coil contact act	of logical oper ion:	ation before OUT	command to th	ne des	signated ele	ment.				
			Out commar	nd							
	Result:	Coil	Access	s Point:							
			Contact a (NO)	Contact b (NC)						
	FALSE	Off	Not conducting	Conducti	ng						
	TRUE	On	Conducting	Not conduc	ting						
Example	Ladder diagra	m:		Command of	code:	Des	cription:				
Lxample		1		LD	X0	Load Cor	tact b of X0				
			- Y1			Establish	parallel				
				AND	X1	connectic of X1	n to contact a				
				OUT	Y1	Drive Y1	coil				

Command	Function								
SET	Action continu	ies (ON)							
Onerend	X0~X17	Y0~Y17	M0~M799	T0~159	(C0~C79	D0~D39	99	
Operand	_	✓	✓	_		—	_		
Explanation	When the SET command is driven, the designated element will be set as On, and be maintained in an On state, regardless of whether the SET command is still driv. The RST command can be used to set the element as Off.								
Example					X0	Load Cor Establish	tact a of λ parallel	<0	
					10	of V0			
				SET	Y1	Action co	ntinues (C	N)	
Command			Fund	ction					
RST	Clear contact	or register	1						
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	(C0~C79	D0~D39	99	
Operand	_	✓	✓	✓		✓	✓		
Explanation	When the RST command is driven, the action of the designated element will be a follows:								
	Element Mode								
	Y, M Both	n coil and conta	act will be set a	as Off.					
	TC The	current timing	or count value	e will be set a	as 0, a	ind both th	e coil		
	and	contact will be	set as Off.						
	D The	content value	will be set as ().				4 : 11	
	remain uncha	nmand nas no nged.	t been execute	d, the status	s of the	e designate	e element	[WIII	
Example	Ladder diagra	m:		Command	code:	Des	scription:	<i>(</i> 0	
	RST Y5			LD	XU	Clear	contact	or	
				RST	Y5	register	oontdot	01	
Command			Fund	ction					
TMR	16-bit timer								
Operand	T-K	T0~T159,K0	~K32,767						
Operand	T-D	T0~T159,D0	~D399						
Explanation	When the TMI	R command is	executed, the	designated f	imer c	oil will be o	electrified,	and	
	the timer will	begin timing.	The contact's	action will I	be as	follows wh	nen the tir	ning	
	value reaches	the designate	d set value (tin	ning value >	= set v	/alue):			
	NO (Norma	ally Open) contai	ct Closed						
	If the RST cor	nmand has not	t been execute	d the status	s of the	e designate	ed element	t will	
	remain uncha	nged.				- acoignate			
Example	Ladder diagra	m:		Command LD	code: X0	Des Load Con	scription: tact a of X0)	
		TMR T5	K1000	TMR T5	5 K100	0 T5 timer Set value	as K1000		

Command	Function								
CNT	16-bit counter								
Onenend	C-K	C0~C79 [,] K0~K32,767							
Operand	C-D	C0~C79 , D0~D3	399						
	$$ When the CNT command is executed from Off \rightarrow On, this indicates that the designate								
Explanation	$\overset{n}{\smile}$ counter coil goes from no power $ ightarrow$ electrified, and 1 will be added to the count								
	count value; when the count reaches the designated value (count value = set value),								
	the contact wil	ll have the following	g action:						
	NO (Norma	lly Open) contact	Closed	bsed					
	NC (Normal	lly Close) contact	Open	en la					
	After the coun	t value has been re	eached, the	e conta	ct and coun	t value will both remain			
	unchanged ev	ven if there is contir	nued count	pulse i	nput. Pleas	e use the RST			
	command if yo	ou wish to restart o	r clear the	count.					
	Ladder diagra	m:		Comm	and code:	Description:			
Example	X0			LD	X0	Load Contact a of X0			
		CNT C2 K10	00	CNT	C2 K100	C2counter Set value as K100			

Command	Function								
MC/MCR	Connect/release a common series contact								
Operand	N0~N7								
Explanation	MC is the main control initiation command, and any commands between MC and MCR will be executed normally. When the MC command is Off, any commands between MC and MCR will act as follows:								
	Determination of commands			Description					
	Ordinary timerThe timing value will revert to 0, the coil will lo power, and the contact will not operateCounterThe coil will lose power, and the count value a contact will stay in their current state								
	Coil driven by OUT command	None recei	ve pov	wer					
	Elements driven by SET, RST commands Will remain in their current state								
	Applications commands	None are a	ctuate	ed					
	MCR is the main control stop command, and is placed at the end of the main cor program. There may not be any contact commands before the MCR command. The MC-MCR main control program commands support a nested program structur with a maximum only 8 levels; use in the order N0-N7, please refer to the following								
Example	Ladder diagram:	Comm code	and e:	Description:					
		LD	X0	Load Contact a of X0					
	X1	МС	N0	Connection of N0 common series					
	X2 MC N1	LD OUT :	X1 Y0	Load Contact a of X1 Drive Y0 coil					
	X3	LD	X2	Load Contact a of X2					
		MC	N1	Connection of N1 common series contact					
		LD OUT	X3 Y1	Load Contact a of X3 Drive Y1 coil					
	X10 MCR N0	MCR	N1	Release N1 common series contact					
	MC N0	MCR	N0	Release N0 common series contact					
	Y10	: LD	X10	Load Contact a of X10					
	MCR N0	MC	N0	Connection of N0 common series contact					
		LD OUT :	X11 Y10	Load Contact a of X11 Drive Y10 coil					
		MCR	N0	Release N0 common series contact					

Command	Function								
	Start of forward edge detection action								
	X0~X17	Y0~Y17		99	T0~	159	C0~C79	D0~D399	
Operand	✓	√				/	√		
Explanation The LDP command has the same usage as LD, but its action is different; its function is to save current content, while also saving the detected state of the rising edge of the contact to the cumulative register.									
Example	Example Ladder diagram:				nand le:		Descrip	tion:	
		- <u>Y1</u>	L	DP	X0	Start o action	f X0 forward	edge detection	
			AN	ID	X1	Create contac	e series t a of X1	connection to	
			0	UT	Y1	Drive `	Y1 coil		
Remark	of usage of ea A rising edge o On before pov	ch operand. contact will be ver is turned o	TRUE afte n to the PL	r po .C.	wer is t	urned o	n if the rising	edge contact is	
Command				Fund	ction				
LDF	Start of revers	e edge detecti	on action						
Onenend	X0~X17	Y0~Y17	M0~M79	99	T0~	·159	C0~C79	D0~D399	
Operand	✓	\checkmark	\checkmark		v	1	✓	_	
Explanation	The LDF command has the same usage as LD, but its action is different; its function is to save current content while also saving the detected state of the falling edge of the contact to the cumulative register								
	Laddar diagra	~.	•		Comn	nand co	ode: D	escription:	
Example					LDF	х	0 Start of edge de	of X0 reverse etection action	
					AND	x	Create	series tion to contact a	

Command	Function								
ANDP	Forward edge detection series connection								
Operand	X0~X17	Y0~Y17	M0~M799	T0~159		C0~C79	D0~D399		
Operanu	✓	✓	\checkmark	✓		\checkmark	—		
Explanation	The ANDP cor	mmand used f	or a contact ris	ing edge det	ection	series cor	nnection.		
		Command	code:	Des	scription:				
Example X0 X1				LD	X0	Load Cor	ntact a of X0		
				VA	X1 Forwa	ard edge			
					X1	detection	series		

OUT

OUT

of X1

Y1

Y1

Drive Y1 coil

connection

Drive Y1 coil

Command	Function							
ANDF	Reverse edge	Reverse edge detection series connection						
Operand	X0~X17	Y0~Y17	M0~M799	T0~159 C0~C79		D0~D399		
	~	~	✓	✓	~	_		

Explanation The ANDF command is used for a contact falling edge detection series connection.

Example Ladder diagram:	Y1
-------------------------	----

Comman	d code:	Description:			
LD	X0	Load Contact a of X0			
ANDF	X1	X1 Reverse edge detection series connection			
OUT	Y1	Drive Y1 coil			

Command	Function						
ORP	Forward edge detection parallel connection						
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399	
	✓	✓	✓	✓	✓	_	

Explanation The ORP command is used for a contact rising edge detection parallel connection.

Y1

Comman	d code:	Description:		
LD	X0	Load Contact a of X0		
ORP	X1	X1 Forward edge detection parallel connection		
OUT	Y1	Drive Y1 coil		

Command	Function							
ORF	Reverse edge	Reverse edge detection parallel connection						
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399		
	✓	✓	✓	\checkmark	✓	_		

[Explanation] The ORF command is used for contact falling edge detection parallel connection.

	Ladder diagram:		Comman	d code:	Description:
Example		-(Y1)	LD	X0	Load Contact a of X0
			ORF	X1	X1 Reverse edge detection parallel connection
			OUT	Y1	Drive Y1 coil

Command	Function						
PLS	Upper differen	tial output					
Onerend	X0~X17	Y0~Y17	M0~M799	T0~159		C0~C79	D0~D399
Operand	_	\checkmark	~	_		_	_
Explanation	Upper differen PLS commany consisting of c Ladder diagra X0 M0 Time sequenc X0 M0 Time	tial output con d will be exec one scanning p m: PLS M0 SET Y0 e diagram: for one scan cy	nmands. When cuted, and M0 period.	X0=Off→O will send o Command LD PLS LD SET	on (po one p code X0 M0 Y0	e: Des Load Cor M0 Uppe output Load Cor Y0 Actior (ON)	triggered), the a pulse length scription: ntact a of X0 r differential ntact a of M0 n continues
	¥U						
Command			Fun	ction			
PLF	Lower differen	tial output	1				
Operand	X0~X17	Y0~Y17	M0~M799	T0~159		C0~C79	D0~D399
	—	\checkmark	✓	_		—	—
Explanation	Lower differen PLF comman consisting of c	tial output con d will be exe one scanning r	nmand. When 2 cuted, and M period	X0= On→Of 0 will send	ff (neơ one	gative edge- pulse, with	triggered), the pulse length
	Ladder diagra	m:		Command	code	e: Des	scription:
Example		PLF M0		LD	X0	Load Cor	ntact a of X0
	MO	SET Y0		PLF	M0	M0 Lowe output	r differential
	Time sequenc	e diagram:		LD	M0	Load Cor	ntact a of M0
	X0	5		SET	Y0	Y0 Actior (ON)	n continues
	M0Time	for one scan cy	rcle			. ,	
	Y0						

Command	Function
END	Program conclusion
Operand	N/A
	An END command must be added to the end of a ladder diagram program or
Explanation	command program. The PLC will scan from address 0 to the END command, and will

return to address 0 and begins scanning again after execution.

Command	Function							
NOP	No action							
Operand	N/A							
Explanation	The command NOP does not perform any operation in the program. Because execution of this command will retain the original logical operation results, it can be used in the following situation: the NOP command can be used to replace a command that is deleted without changing the program length.							
Example	Ladder diagram:	Comm	and code:	Description:				
Lxample	NOP command will be simplified and not displayed when the ladder diagram is	LD	X0	Load Contact b of X0				
	displayed.	NOP		No action				
		OUT	Y1	Drive Y1 coil				

Command	Function						
INV	Inverse of operation resu	ults					
Operand	N/A						
Explanation	Saves the result of the cumulative register.	logic inversion	operation	prior to th	e INV command in the		
Example	Ladder diagram:		Comma	and code:	Description:		
		—(Y1)	LD	X0	Load Contact a of X0		
			INV		Inverse of operation results		
			OUT	Y1	Drive Y1 coil		

Command	Function
P	Index
Operand	P0~P255
	Pointer P is used to subprogram call command API 01 CALL. Use does not require
Explanation	starting from zero, but the number cannot be used repeatedly, otherwise an unpredictable error will occur.

Ladder diagram:	Command code:		Description:	
Example Call P10 X_1 V_1 Y_1	LD CALL :	X0 P10	Load Contact a of X0 Call command CALL to P10	
	P10		Pointer P10	
	LD	X1	Load Contact a of X1	
	OUT	Y1	Drive Y1 coil	

16-6-3 Overview of application commands

		Command code		Р	E	STEPS	
Classification	API	16 bit	32 bit	command	Function	16bit	32bit
	01	CALL	-	✓	Call subprogram	3	-
Circuit control	02	SRET	-	-	Conclusion of subprogram	1	-
	06	FEND	-	-	Conclusion of main program	1	-
	10	CMP	DCMP	✓	Compares set output	7	13
Send	11	ZCP	DZCP	✓	Range comparison	9	17
comparison	12	MOV	DMOV	✓	Data movement	5	9
	15	BMOV	_	✓	Send all	7	_
	20	ADD	DADD	✓	BIN addition	7	13
	21	SUB	DSUB	✓	BIN subtraction	7	13
Four logical	22	MUL	DMUL	✓	BIN multiplication	7	13
operations	23	DIV	DDIV	✓	BIN division	7	13
	24	INC	DINC	✓	BIN add one	3	5
	25	DEC	DDEC	✓	BIN subtract one	3	5
Rotational	30	ROR	DROR	✓	Right rotation	5	_
displacement	31	ROL	DROL	✓	Left rotation	5	_
	40	ZRST	_	✓	Clear range	5	-
Data Process					BIN whole number \rightarrow binary		
Data FIUCESS	49	_	DFLT	✓	floating point number	-	9
					transformation		
Communication	150	MODRW	_	~	MODBUS read/write	7	_
	110		DECMP	✓	Comparison of binary floating		13
	111	_	DEZCP	×	Comparison of binary floating		17
			DEZOI		point number range		
	116	_	DRAD	 ✓ 	Angle \rightarrow Radian	_	9
	117	_	DDEG	 ✓ 	Radian \rightarrow Angle	_	9
	120	_	DEADD	~	Binary floating point number addition	_	13
	121	_	DESUB	✓	Binary floating point number subtraction	_	13
	122	_	DEMUL	~	Binary floating point number multiplication	_	13
	123	_	DEDIV	~	Binary floating point number division	_	13
	124	_	DEXP	✓	Binary floating point number		9
Floating point	125	_	DLN	~	Binary floating point number	_	9
operation	127	_	DESQR	×	Binary floating point number	_	9
	129	-	DINT	~	Binary floating point number \rightarrow BIN whole number transformation		9
	130	_	DSIN	✓	Binary floating point number	_	9
	131	_	DCOS	✓	Binary floating point number	_	9
	132	_	DTAN	~	Binary floating point number TAN operation	_	9
	133	-	DASIN	~	Binary floating point number ASIN operation	_	9
	134	-	DACOS	~	Binary floating point number ACOS operation	_	9
	135	-	DATAN	×	Binary floating point number ATAN operation	_	9

	API	Command code		Р		STEPS	
Classification		16 bit	32 bit	command	Function	16bit	32bit
Floating point operation	136	-	DSINH	✓	Binary floating point number SINH operation	_	9
	137	-	DCOSH	~	Binary floating point number COSH operation	_	9
	138	-	DTANH	~	Binary floating point number TANH operation	-	9
	160	TCMP	—	✓	Compare calendar data	11	_
	161	TZCP		 ✓ 	Compare calendar data range	9	_
Calendar	162	TADD	-	✓	Calendar data addition	7	
	163	TSUB	_	 ✓ 	Calendar data subtraction	7	_
	166	TRD	-	✓	Calendar data read	3	
GRAY code	170	GRY	DGRY	~	BIN→GRY code transformation	5	9
	171	GBIN	DGBIN	~	GRY code \rightarrow BIN transformation		9
	215	LD&	DLD&	-	Contact form logical operation LD#	5	9
	216	LDĮ	DLDJ	-	Contact form logical operation LD#	5	9
	217	LD^	DLD^	-	Contact form logical operation LD#	5	9
	218	AND&	DAND&	-	Contact form logical operation AND#	5	9
Contact form logical operation	219	ANDI	DANDI	-	Contact form logical operation AND#	5	9
	220	AND^	DAND^	-	Contact form logical operation AND#	5	9
	221	OR&	DOR&	-	Contact form logical operation OR#	5	9
	222	OR	DOR	-	Contact form logical operation OR#	5	9
	223	OR^	DOR^	-	Contact form logical operation OR#	5	9
	224	LD=	DLD=	-	Contact form compare LD *	5	9
	225	LD>	DLD>	-	Contact form compare LD *	5	9
	226	LD<	DLD<	-	Contact form compare LD *	5	9
	228	LD<>	DLD<>	-	Contact form compare LD *	5	9
	229	LD<=	DLD<=	-	Contact form compare LD *	5	9
	230	LD>=	DLD>=	-	Contact form compare LD *	5	9
	232	AND=	DAND=	_	Contact form compare AND *	5	9
	233			_	Contact form compare AND*	5	9
Contact form	234				Contact form compare AND*	5	9
compare	204			-	Contact form compare AND*	5	0
command	230			-	Contact form compare AND	5	9
	201			-	Contact form compare AND *	- 5 - E	3
	230			-	Contact form compare OD.	5 F	9
	240			-	Contact form compare OR *	5 5	9
	241			-	Contact form compare UR*	5	9
	242			-	Contact form compare OR*	5	9
	244			-	Contact form compare OR*	5	9
	245			-	Contact form compare OR*	5	9
	246	\mid UR>=	\mid DOR>=	-	Contact form compare OR*	5	9
Classification	API	Comma	nd code	Р	F unction	STEPS	
---------------------------	-----	--------	---------	-----------------------	--	-------	-------
Classification	API	16 bit	32 bit	command	Function	16bit	32bit
	275	-	FLD=	_	Floating point number contact	-	9
					form compare LD *		
contact form	276	-	FLD>	-	form compare LD *	-	9
	277	-	FLD<	-	Floating point number contact form compare LD *	-	9
	278	-	FLD<>	-	Floating point number contact	-	9
	279	-	FLD<=	-	Floating point number contact	-	9
	280	-	FLD>=	-	Floating point number contact form compare LD *	-	9
	281	-	FAND=	-	Floating point number contact form compare AND *	-	9
	282	-	FAND>	-	Floating point number contact form compare AND *	-	9
	283	-	FAND<	-	Floating point number contact form compare AND *	-	9
	284	-	FAND<>	-	Floating point number contact form compare AND *	-	9
Compare command	285	-	FAND<=	-	Floating point number contact form compare AND *	-	9
	286	-	FAND>=	-	Floating point number contact form compare AND *	-	9
	287	-	FOR=	-	Floating point number contact form compare OR *	-	9
	288	-	FOR>	-	Floating point number contact form compare OR *	-	9
	289	-	FOR<	-	Floating point number contact form compare OR *	-	9
	290	-	FOR<>	-	Floating point number contact form compare OR *	-	9
	291	-	FOR<=	-	Floating point number contact form compare OR *	-	9
	292	-	FOR>=	-	Floating point number contact form compare OR *	-	9
	139	RPR	_	✓	Read servo parameter	5	_
	140	WPR	_	✓	Write servo parameter	5	_
	141	FPID	—	✓	Driver PID control mode	9	—
[142	FREQ	_	✓	Driver torque control mode	7	_
Driver special command	261	CANRX	_	✓	Read CANopen slave station data	9	-
	264	CANTX	_	~	Write CANopen slave station data	9	-
	265	CANFLS	_	~	Refresh special D corresponding to CANopen	3	-
	320	ICOMR	DICOMR	✓	Internal communications read	9	17
	321	ICOMW	DICOMW	 ✓ 	Internal communications write	9	17

16-6-4 Detailed explanation of applications commands

API 01 CALL	P S	Call subprogram
Bit device X Y M	Word device K H KnX KnY KnM T C	Image: 16-bit command (3 STEP) C D CALL Continuous CALLP Pulse execution type execution type execution type
Notes on operand usage: The S operand can CP2000 series devic	designate P ce: The S operand can designate P0	-P63
Explanation	S : Call subprogram pointer.	
	The subprogram must end a	fter the SRET command.

Refer to the FEND command explanation and sample content for detailed command functions.

API 02 SRET	P – Conclus	sion of subprogram
Bit deviceXYM	Word device K H KnX KnY KnM T C D	16-bit command (1 STEP) FEND Continuous execution type
Notes on operand usage No operand A contact-driven co	e: ommand is not needed	<u>32-bit command</u>
Explanation	A contact-driven command is n	ot needed. Automatically returns next

- command after CALL command
- Indicates end of subprogram. After end of subprogram, SRET returns to main program, and executes next command after the original call subprogram CALL command.
- Refer to the FEND command explanation and sample content for detailed command functions.

API D CMP P S1 S2 D									\mathbf{D}	Co	ompa	ires set output
	Bit	dev	ice			V	Vord	devic	e			16-bit command (7 STEP)
	Х	Y	М	K	Н	KnX	KnY KnM T C		С	D	CMP Continuous CMPP Pulse	
S1				*	*	*	*	*	*	*	*	execution type execution type
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)
D Note The	es on oper	* oper and [* and us) occu	usage: cupies three consecutive points								DCMP Continuous DCMPP Pulse execution type execution type Flag signal: none
E	(plan	ation		S1: Compare value 1. S2: Compare value 2. D: Results of comparison. Compares the size of the content of operand S1 and S2; the results of comparison are expressed in D. Size comparison is performed algebraically. All data is compared in the form of numerical binary values. Because this is a 16-bit command, when b15 is 1, this indicates a negative number.								
[Exam	ple		When the designated device is Y0, it automatically occupies Y0, Y1 and Y2. When X10=On, the CMP command executes, and Y0, Y1 or Y2 will be On. When X10=Off, the CMP command will not execute, and the state of Y0, Y1 and Y2 will remain in the state prior to X10=Off. If \geq , \leq , or \neq results are needed, they can be obtained via series/parallel connections of Y0-Y2.								
					×10 ↓┣─		[Y0 - } Y1 - }	CMF - IfI - IfI	• K K10> K10=	10 D10, D10,	D1 Y0 = Y1 =	0 Y0 = On = On

- Y2 → If K10<D10, Y2= On
- To clear results of comparison, use the RST or ZRST command.

L X10			
	ZRST	М0	M2

API 11	D	ZCP	Ρ	(S	1) (§	<u>52</u>) (S	(D) Ra	ange	compa	arison			
	4				14	land	ما م برا م	-			16 hit a		4 (0 67		:
BI		ice	K		V	vora		e T	0				<u>u (951</u> ntinuous		Pulso
S1 ×	Y	IVI	 *	<u>н</u> *	<u>KNX</u> *	<u>KNY</u> *	*	 *	*	 *	201	exec	ution type	2011	execution type
S2			*	*	*	*	*	*	*	*	32 hit o	ommon	d (17 S		;
S			*	*	*	*	*	*	*	*	DZCE		<u>u (173</u> ntinuous		Pulse
D	*	*										exec	ution type	9	execution type
Notes or The con S2 opera The ope	n oper tent va and rand [and us alue o) occu	sage: f oper ipies t	and S	S1 is l	ess th cutive	an the	e cont	tent va	lue of	Flag sig	ınal: nor	ie		
Explan	nation		(S1 (S) Whe uppo Whe (S1 Size num indio Whe Whe): Lo) : C en th er lin en lo) to e cor erica cates en th en X(ower Comp le co nit wer l perfc npari al bin s a ne s a ne s a ne s a ne s a ne s a ne	limit arativ mpar 52), t imit orm c son i ary v egativ signa	of ra ve va rative the re S1 ompa s per values ve nu ted d ZCP	nge lue. valu sults > u ariso form s. Be mbe evice	comp D ue s of co pper n with ned al ecaus r. e is M	ariso : Res S i ompa limit i the lgebr e thi lgebr e thi l0, it	on. $(S2)$ sults of a comp arison a (S2), upper aically. s is a automa	2: Up compa pared are exp the con and lov All da 16-bit o atically and M	per limi arison. with the pressed mmand wer limit ata is co comman occupie	e lower I in D. will use mpared nd, wher es M0, M or M2 wil	e comparison. imit S1 and the lower limit in the form of b15 is 1, this I1 and M2. I be On. When
		•	X0= rem If ≥ coni	Off, ain ir , ≤, necti	the Z n the or ; ons c	CP of state ≠ res of M0 X0	comm e prior sults -M2.	nand r to > are	will r (0=Ot neec	not e ff. led,	they o	, and t can be	the state e obtair	e of M0, ned via	M1 or M2 will series/parallel
						-1 -			ZCF	> I	K 10	K100	C10	M0	
		•	To c	lear X0 -/	resul	ts of 	comp est est	M0 $M1$ $M2$ $M2$ $M0$ $M1$ $M2$	- If - If on, us] -	C10 K10 C10 Se th X0	< K10, ≦ C10 > K100 e RST	, M0 = 0 ≦ K100 0, M2 = or ZRS	On 0, M1 = = On ST comr ST M0	On nand.	

A	2		MOV							D	ata m	novement		
1	2	D '		P										
	Bit	t dev	vice			V	Vord	devic	е			16-bit command (5 STEP)		
	Х	Y	М	Κ	Н	KnX	KnY	KnM	Т	С	D	MOV Continuous MOVP Pulse		
S				*	*	*	*	*	*	*	*			
D			<u> </u>				*	*	*	*	*	32-bit command (9 STEP)		
Not	es on	ı opei	rand u	sage:	none							DMOV Continuous DMOVP Pulse execution type execution type Flag signal:		
E	xplan	ation		 S: Data source. D: Destination of data movement. When this command is executed, the content of S content will be directl moved to D. When the command is not executed, the content of D will no change. 										
	Exam	nple		Wh sen Wh T0	en Xí t to d en X will b	0=Off lata r 1=Off e ser	f, the egisto f, the nt to c	conte er D1 cont data r	ent of 0. ent of egiste X0 X1 X1	D1(D1 r D	0 will 0 will 10.	not change; if X0=On, the value K10 will be Il not change; if X1=On, the current value of MOV_K10D0		

API 15 BMO	V P S D n Send all								
Bit device	Word device								
X Y M	K H KnX KnY KnM T C D BMOV Continuous BMOVP Pulse								
S	* * * * execution type execution type								
D	* * * * * <u>*</u>								
n Nata									
n operand scope n	isage: = 1 to 512								
	Flag signal: none								
Explanation	S: Initiate source device. \square : Initiate destination device. \square : Send block								
	length.								
	The content of n registers starting from the initial number of the device designated								
by S will be sent to the n registers starting from the initial number of									
	device designated by <u>n</u> . if the number of points referred to n exceeds the								
	range used by that device, only points within the valid range will be sent.								
Example 1	When X10=On, the content of registers D0~D3 will be sent to the four registers								
	U X10								
	$ = BMOV D0 D20 K4 D0 \rightarrow D20 $								
	$D1 \rightarrow D21$ $h=4$								
	$D2 \longrightarrow D22$								
	If the design stad bit deviage $K_{\rm e} X$ $K_{\rm e} X$ and $K_{\rm e} M$ are sent. S and D								
Example 2	If the designated bit devices KnX, KnY, and KnW are sent, and the must be identical								
	$_{\rm I}$ M1000								
	BMOV K1M0 K1Y0 K3 M0 Y0								
	$M1 \longrightarrow Y1$								
	$M_2 \longrightarrow Y_2$								
	$M3 \longrightarrow Y3$								
	M4								
	$M5 \rightarrow Y5$ $h=3$								
	$M_6 \rightarrow Y_6 / T_{-3}$								
	$[M7] \longrightarrow [Y7]$								
	M8 Y10								
	M9> Y11								
	$M10 \longrightarrow Y12$								
	$ M11 \longrightarrow Y13 '$								
	In order to prevent overlap between the transmission addresses of two operands.								
Example 3	which would cause confusion, make sure that the addresses designated by the								
	two operands have different sizes, as shown below:								
	When \bigcirc > \bigcirc , send in the order $\bigcirc \rightarrow \bigcirc$ \rightarrow \bigcirc .								
	X10								
	= BMOV D20 D19 K3 D20 D19 D19								
	$ \begin{array}{c} D21 \\ \hline 3 \end{array} \rangle \begin{array}{c} D20 \\ \hline 3 \end{array} \rangle \begin{array}{c} D20 \\ \hline 5								
	When $(\underline{S}) < (\underline{D})$, send in the order $(\underline{3}) \rightarrow (\underline{2}) \rightarrow (\underline{1})$.								
	$D12 \xrightarrow{(1)} D13$								

AF 20	וי כו	D	ADD	Ρ		(S1)	(S2		\mathbf{D}	BI	N ad	dition
	Bit	t dev	vice			V	/ord	devic	e			16-bit command (7 STEP)
	X	Y	M	K	Н	KnX	KnY	KnM	Т	С	D	ADD Continuous ADDP Pulse
S1				*	*	*	*	*	*	*	*	execution type execution type
S2				*	*	*	*	*	*	*	*	32 bit command (13 STED)
D							*	*	*	*	*	DADD Continuous DADDP Pulse
Not	es or	ı ope	rand u	sage:	none							execution type execution type
												Flag signal: M1020 Zero flag M1021 Borrow flag M1022 Carry flag Please refer to the following supplementary explanation
	volor	otio		(S1). Ai	idenc	, (S	2). A	dden	d (D).	Sum
E	kplar			Usii met The (neg 3+(- Flag	ng tv hod high gativo -9)=- g cha	vo da will bo nest b e), e 6) inges	ata s e sto it of nabli	ource red ir any c ng tl	es: T n D data i he u ed wit	he r D. s syr se o h the	nboli nboli falg add	of adding $(S1)$ and $(S2)$ using the BIN zed as bit 0 indicating (positive) 1 indicating gebraic addition operations. (for instance: ition.
				1.	Whe	en cal	culat	ion r	esults	s are	0. th	e zero flag M1020 will be On.
				2.	Whe	en cal	culat	ion re	esults	are	less	than -32,768, the borrow flag M1021 will be
				3. (Dn. Whe Dn.	en cal	culat	ion re	esults	s are	grea	ter than 32,767, the carry flag M1022 will be
	Exam	nple		16-I con	oit Bl tent X0	N ado of au	ditior gend	n: Wh D10 — Al	ien X will e	0=Or exist D0	n, the in the D10	e result of the content of addend D0 plus the e content of D20.
	Rem	ark		Rela 16	ation bit: 2	ship l Zero f	oetwe lag	een f	lag a	ction: Zer	s anc o flag	l negative/positive numbers: Zero flag
				-2, •	-1, 0	-32 ow fla	2,768 Ig	3 ← The of th = 1 (high ne dat (nega	est bita	0 0 it 1 c	The highest bit of the data = 0 (positive)
				32 -2, - B	2 bit: 1, 0	Zero	flag 7,483,	648 The of th = 1 (▲ highered at a transmission of the second seco	Ze 1, est bi a tive)	ero fla	Ag Zero flag 1 2,147,483,647 0 1 2 The highest bit Carry flag = 0 (positive)

API 21SUB DS1S2D							(S2		\mathbf{D}	BI	N su	btraction
	Bit	dev	ice			V	Vord	devic	e			16-bit command (7 STEP)
	Х	Y	M	K	Н	KnX	KnY	KnM	Т	С	D	SUB Continuous SUBP Pulse
S1				*	*	*	*	*	*	*	*	execution type execution type
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)
D							*	*	*	*	*	Continuous Pulse Pulse
Not	es on	oper	and u	sage:	none							execution type DSUBP execution type
Flag signal: M1020 Zero flag M1021 Borrow flag M1022 Carry flag Please refer to the following supplementary explanation										Flag signal: M1020 Zero flag M1021 Borrow flag M1022 Carry flag Please refer to the following supplementary explanation		
E.	$\boxed{\text{Explanation}} \blacksquare \underbrace{\text{S1}}$: Minuend. \underbrace{\text{S2}}: Subtrahend. $\underbrace{\text{D}}$: Difference.											
Ľ	\square Using two data sources: The result of subtraction of $(S1)$ and $(S2)$ using the											
			-		ig tw)	Suit	
			•	The (neg Flag	high gative g cha	nod is nest b e), er inges	s stor oit of a ablin conr	any c ig the necte	lata is use o d with	of al s syn of al n sub	nboli gebr otrac	zed as bit 0 indicating (positive) 1 indicating aic subtraction operations. tion.
		 When calculation results are 0, the zero flag M1020 will be On. When calculation results are less than –32,768, the borrow flag M1021 will be On. 										
				3. C	Whe Dn.	en cal	culat	ion re	esults	are	grea	ter than 32,767, the carry flag M1022 will be
	Exam	ple		16-ł con	bit Bl	IN su of D0	btrac , and	tion: the o	Wher differe	n X0 ence)=On is st	, the content of D10 is subtracted from the ored in D20.
								- รเ	JB	D0	D1	D D20

	MUL	DU	D10	D20
	NALII	00	D10	KOMO
	INIUL			NOIVIU

API 23)	DIV	Ρ	P (S1) (S2) (D)							ivision
	Bit	dev	vice			V	Vord	devic	е			16-bit command (7 STEP)
	X	Y	M	K	Н	KnX	KnY	KnM	T	С	D	DIV Continuous DIVP Pulse
S1				*	*	*	*	*	*	*	*	execution type execution type
S2				*	*	*	*	*	*	*	*	32-bit command (13 STED)
D							*	*	*	*	*	DDIV Continuous DDIVP Pulse
Note: The 2	s on 16-bi	ope it coi	rand u mman	sage: d oper	and D	will o	ссиру	2 cons	secutiv	e poir	nts	E Execution type E Exec
Exp	 Explanation (S1): Dividend. (S2): Divisor. (D): Quotient and remainder. Using two data sources: The quotient and remainder will be stored in (D) when (S1) and (S2) are subjected to division using the BIN method. The sign bit for (S1), (S2) and (D) must be kept in mind when performing a 16-bit operation. 16-bit BIN division: 											
				C	<u>S1</u>)				<u>S2</u>)		D D +1
			b1	5		b00) 	o15		b	 	b15b00 b15b00
			lf cor	isecu	is a tive i	bit units	devic and y	e, K ∕ield t	1∼K4 the વા	can uotie	nt an	designated 16 bits, which will occupy 2 dremainder.
E	 Example When X0=On, the quotient resulting from division of dividend D0 by divisor D10 will be placed in D20, and the remainder will be placed in D21. Whether the highest bit is Off or On will indicate the sign of the result. 											
				I				DI	/	D0	D10	K4Y0

AF 24	21 1	D	IN	C P			(D)		B	BIN ac	ld one				
Bit device Word device											:16-bit command (3 STEP)					
	Х		Y N	I K	Н	KnX	KnY	KnM	T	С	D	INC Continuous INCP Pulse				
D							*	*	*	*	*	execution type execution type				
Note	es o	on op	peranc	l usage	none				<u>32-bit command</u> (5 STEP)							
								DINC Continuous DINCP Pulse execution type execution type								
Flag signal: none																
 Explanation D: Destination device. If a command is not the pulse execution program will add 1 to the content of determination This command is ordinarily used as a 											cution of de as a p	n type, when the command is executed, the vice D for each scanning cycle. bulse execution type command (INCP).				
				Du Du	During 16-bit operation, 32,767 +1 will change the value to -32,768. During 32 bi operation, 2,147,483,647 +1 will change the value to -2,147,483,648.											
E	Exai	mplo	e -	When X0=Off \rightarrow On, 1 is automatically added to the content of D0. X0 INCP D0												

AF 25	יו 5 נ	5	DEC	BIN							BIN subtract one					
	Bit	dev	ice			V	/ord	devic	e			16-bit command (3 STEP)				
	Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D	DEC Continuous DECP Pulse execution type execution type				
Note	es on	oper	and us	sage:	none		*		32-bit command (5 STEP) DDEC Continuous DDECP Pulse execution type Flag signal: none							
Ex	plan	ation		D If a proo This): De comr gram s com	estina nand will a nman	ition is no add 1 d is o	ecutio t of de as a	on type, when the command is executed, the evice D for each scanning cycle. pulse execution type command (DECP).							
			•	During 16-bit operation, -32,768 -1 will change the value to 32,767. During 32 bit operation, -2,147,483,648 -1 will change the value to 2,147,483,647.												
E	Exam	ple) ■	When X0=Off \rightarrow On, 1 is automatically subtracted from the content of D0. X_0 \square \square												

AP 40	'l)		ZRS								Clear range							
	Bit	de	vice			V	Vord	devic	e				[:] 16-b	it comm	and	(5 STE	P)	:
	Х	Y	M	K	Н	KnX	KnY	KnM	Т	С		D	: ZR	ST : C	Conti	nuous	ZRSTP	Pulse
D1		*	*						*	*		*	:	ex	ecut	ion type		execution type
D2		*	*						*	*		*	·32-h	it comm	and			:
Note	es on	ope	erand L	Isage	: noranc	l < nur	nhor o	foner	and D	-			<u>-32-0</u>	– :	-		_	
Ope	rand	s D ₁	$, D_2 m$	ust d	esigna	te the	same	type of	f devic	é é								
Plea	ise re	efer	to the	func	tion sp	ecifica	tions t	table f	or eac	h d	evic	ce in	Flag	signal: n	one			
serie	es for	• the	scope	of d	evice u	sage		initia	المامين						fine	مارمين		
Ex	plan	atic	n) 🗖	U		arrar	ige s	inilia	l devi	ce.	D_2		earr	anges	5 III ia	ai devic	e.	
\subseteq				Ν	hen t	the n	umbe	er of	opera	anc	d D)1 >	nun	nber of	f op	erand	D_2 , only	y the operand
				de	esigna	ated b	by D_2	will b	e cle	are	ed.	•					_,	
_			_															
E	Exam	ple		VVI	ien X	0 is C)n, ai	JXIIIar	y rela	ays	M:	300	~ M3	399 will	be	cleared	d and ch	hanged to Off.
\subseteq				VVI	nen X	.1 IS	On,	16-bit	COU	nte	rs	CO	~ ()	127 WI	ll al	I be clo	eared.	(Writes 0, and
			_		ars a		ange	s cor		anc T	1 00	7:). ha ala		al (\\/mi	taa 0 a	and alagra and
				001			On,	umer nd oc	il to i	- I ∩ff`	121		ii aii	be cle	are		les 0, a	ind clears and
			-		anges oon X	3 ie C	acia In th	nu cu o dot	n in c	UII, tote). 5 rc	anieł	ore l	ח ~ חח	100	will bo	cleared	0 ac tas bre b
			-	• • •		0 13 0	/II, UI		aint	Jaio	a 10	yısı			100			
								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			_	7F	RST	M30	0	M399		
								V4			L							
								X1 11			Г	70	от	0		0107		
													(51			0127		
								X10			Г							
												Z٢	RST	10		I 127		
								X3						-			_	
							\vdash				-	ZF	RST	D0		D100		
_			_	Π.		:	 	م ام مر م			∟ مالد							
(F	Rema	ark		De	VICES	can i d dou	naep vice T		ntiy t	ise	the	e cie	ear c	ommar	ו) מו	RST), S	ucn as	DIT DEVICE Y, IVI
\subseteq				an	u wor	u uev	ice i	, C, L X0).				_				_	
							_	ЩЙ.						RST		MO		
								• •					L			mo]	
													Г	DOT		T 0	1	
														RST		10		
													Г				1	
														RST		Y0		
															-		1	

AF 49)) [כ	FLT	P SD BI								whole number \rightarrow binary decimal formation							
	Bit device Word device									16-bit co	<u>mmand</u>								
	Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D	:	: .		. – . :				
S		*	*						*	*	*								
D		*	*						*	*	*	32-bit co	mmand (9s	<u>teps)</u>		i			
Note	es on	oper	and u	sage:	Pleas	e refei	r to the	e funct	ion sp	ecifica	ations	s DFLT Continuous DFLTP Pulse							
table	e for (each	devic	e in se	eries fo	or the	scope	·	execution	type	EXC	scution type							
The operand D will occupy 2 consecutive points													Flag signal: none						
E	plan	ation		S:	Trans	sform	atior	n sou	rce d	evice	e. D :	Device s	storing tra	nsform	nation res	ults.			
\subseteq				Tra	insfo	rms E	BIN w	vhole	num	ber iı	nto a	binary o	decimal va	alue.					
												,							
				Whe	en X′	11 is	On, (conve	erts t	he w	hole	number	of values	corres	sponding	to D0 and			
	zxam	pie)	D1 i	nto f	loatin	ig po	int nu	Imbe	rs, w	hich	are plac	ed in D20	and D	21.				
			- T	X11		_	<u> </u>			-									
			- H	-11		- c	FLT		0 0	D	20								

AF 15	ין 0	MC	DDR	W P	S	0 3	20	<u>S</u> ₃) (S	n	M	ODBUS data read/write
	Bit	t dev	ice			V	Vord	16-bit command (5 STEP)				
	Х	Y	Μ	Κ	Н	KnX	KnY	KnM	Т	С	D	MODRW: Continuous MODRW Pulse
S1				*	*						*	execution type P execution type
S2				*	*						*	
S3				*	*						*	<u>32-bit command</u>
S											*]:
n				*	*						*	Flag signal: M1077 M1078 M1079

Explanation

- S1: online device address. S2: communications function code. S3: address of data to read/write. S: register for data to be read/written is stored. N: length of data to be read/written.
- COM1 must be defined as controlled by the PLC (set P9-31 = -12) before using this command, and the corresponding communications speed and format must also be set (set P09-01 and P09-04). S2: communications function code. Currently only supports the following function code; the remaining function code cannot be executed.

Function	Description
H 02	Input read
H 03	Read word
H 06	Write single word
H 0F	Write multiple coils
H10	Write single word

- After executing this command, M1077, M1078 and M1079 will be immediately changed to 0.
- As an example, when CP2000 must control another converter and PLC, if the converter has a station number of 10 and the PLC has a station number of 20, see the following example:

Control slave device converter

			MODF	RW comr	mand	
Seria	Example	S1	S2	S3	S4	n
TNO.		Node ID	Function code	Address	Register	Length
1	Reads 4 sets of data comprising the converter slave device parameters P01-00 to P01-03, and saves the read data in D0 to D3	K10	H3	H100	D0	K4
2	Reads 3 sets of data comprising the converter slave device addresses H2100 to H2102, and saves the read data in D5 to D7	K10	H3	H2100	D5	K3
3	Reads 3 sets of data comprising the converter slave device parameters P05-00 to P05-03, and writes the values as D10 to D12	K10	H10	H500	D10	K3
4	Writes 2 sets of data comprising the converter slave device addresses H2000 to H2001, and writes the values as D15 to D16	K10	H10	H2000	D15	K2

PLC controlling slave device

			MOD	RW com	mand	
Serial	Example	S1	S2	S3	S4	n
No.		Node	Functio	Addres	Registe	1 4
		ID	n code	S	r	Length:
1	Reads 4 sets of data comprising the PLC slave device's X0 to X3 state, and saves the read data in bits 0 to 3 of D0	K20	H2	H400	D0	K4
2	Reads 4 sets of data comprising the PLC slave device's Y0 to Y3 state, and saves the read data in bits 0 to 3 of D1	K20	H2	H500	D1	К4
3	Reads 4 sets of data comprising the PLC slave device's M0 to M3 state, and saves the read data in bits 0 to 3 of D2	K20	H2	H800	D2	K4
4	Reads 4 sets of data comprising the PLC slave device's T0 to T3 state, and saves the read data in bits 0 to 3 of D3	K20	H2	H600	D3	К4
5	Reads 4 sets of data comprising the PLC slave device's C0 to C3 state, and saves the read data in bits 0 to 3 of D4	K20	H2	HE00	D4	K4
6	Reads 4 sets of data comprising the PLC slave device's T0 to T3 count value, and saves the read data of D10 to D13	K20	H3	H600	D10	K4
7	Reads 4 sets of data comprising the PLC slave device's C0 to C3 count value, and saves the read data of D20 to D23	K20	H3	HE00	D20	K4
8	Reads 4 sets of data comprising the PLC slave device's D0 to D3 count value, and saves the read data of D30 to D33	K20	H3	H1000	D30	K4
9	Writes 4 sets of the PLC slave device's Y0 to Y3 state, and writes the values as bits 0 to 3 of D1	K20	HF	H500	D1	K4
10	Writes 4 sets of the PLC slave device's M0 to M3 state, and writes the values as bits 0 to 3 of D2	K20	HF	H800	D2	K4
11	Writes 4 sets of the PLC slave device's T0 to T3 state, and writes the values as bits 0 to 3 of D3	K20	HF	H600	D3	K4
12	Writes 4 sets of the PLC slave device's C0 to C3 state, and writes the values as bits 0 to 3 of D4	K20	HF	HE00	D4	K4
13	Writes 4 sets of the PLC slave device's T0 to T3 state, and writes the values of D10 to D13	K20	H10	H600	D10	K4
14	Writes 4 sets of the PLC slave device's C0 to C3 state, and writes the values of D20 to D23	K20	H10	HE00	D20	K4
15	Writes 4 sets of the PLC slave device's D0 to D3 state, and writes the values of D30 to D33	K20	H10	H1000	D30	K4

Example

- Will trigger M0 On when the PLC begins to operate, and sends instruction to execute one MODRW command.
- After receiving the slave device's response, if the command is correct, it will execute one ROL command, which will cause M1 to be On.
- After receiving the slave device's response, will trigger M50 = 1 after a delay of 10 PLC scanning cycles, and then execute one MODRW command.
- After again receiving the slave device's response, if the command is correct, it will execute one ROL command, and M2 will change to On at this time (and M2 can be defined as a repeat of M); K4M0 will change to K1, and only M0 will remain 1. Transmission can proceed in a continuous cycle. If you wish to add a command, merely add the desired command in the empty frame, and change repeat M to Mn+1.

API 110	DE	CMF	P		S 1	<u>S2</u>		D	C	ompa	arison of binary floating point numbers						
Bi	it dev	vice			V	Vord	devic	e			16 hit command						
	Y	M	K	Н	KnX	KnY	KnM	Т	С	D							
S1			*	*						*	······································						
S2			*	*						*	32-bit command (13 STEP)						
D										*	DECMP Continuous DECMPP Pulse						
Notes o	n oper	and us	sage:						-		execution type execution type						
The ope	erand I	D occu	pies t	hree o	conse	cutive	points	5			Elag signal: none						
Please	refer t	o the 1	unction of dov	on spe	ecifica	tions	table f	or eac	ch de	/ice in							
					saye nnari	son	of hi	narv	float	ina r	point numbers value 1 Sc: Comparison of						
Expla	natior	ı) —	bin	2001	floatir	3011 20 D/	oint r	nai y Sumb	ore v	ung r	2 D : Results of comparison occupies 3						
consecutive points.																	
When binary floating point number 1 is compared with comparative bina																	
floating point number 2, the result of comparison (>, =, <) will be expressed in																	
				If the source energed \mathcal{C} or \mathcal{C} designates a constant K or \mathcal{U} the command \mathcal{U}													
			lf t	he s	gnates a constant K or H, the command will												
			trai	transform the constant to a binary floating-point number for the purpose of													
			cor	comparison.													
			When the designated device is M10, it will automatically occupy M10~M12.														
Exan	nple		v v i		ie ue	sign	aleu	uevic	6 15 1	vii0,							
			When X0=On, the DECMP command executes, and one of M10~M12 will be Or														
			When X0=Off, the DECMP command will not execute, and M10~M12 will be Of When X0=Off, the DECMP command will not execute, and M10~M12 will remai														
			in t	he X	0=0f	fstat	e.										
								_									
			lf re	esult	s in t	he fo	rm of	⁻ ≥, ≤,	or ≠	are	needed, they can be obtained by series and						
			par	allel	conn	ectio	on of l	M10-	M12.								
		-	DIo		uco t	ho D	<u>ст о</u>	- 700		mme	and to clear the result						
		-	FIE	ase	use i	ne r	310										
			IX	0		_											
			H	\vdash			ECM		D0	D	100 M10						
					M10												
			When $(D1, D0) > (D101, D100)$, M10 is On.														
							•	mon	(01,	00)							
					M11												
					$\neg \vdash$		– v	vnen	(D1,	D0)=	-(D101, D100), M11 is On.						
				M12													
					$\neg \vdash$		– V	Vhen	(D1,	D0)<	<(D101, D100), M12 is On.						
			I							,							

16-76

AF 11	ין 1 נ) E	EZCF	P	S	Ð	<u>S2</u>	S	Ð	С	ompa	arison	of binary	<i>r</i> floating point number range
	Bit	dev	vice			V	Vord	devid	e					
	Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D	<u>16-bi</u>	t command	
S1				*	*						*	¦	- :	
S2				*	*						*	<u>32-bi</u>	t command	_(17 STEP)
D		*	*		<u>т</u>							DEZ	CP Cont	tinuous DEZCPP Pulse
Not	es on	ope	rand u	sage:				1	<u> </u>				execu	
The	opera	and	D occi	upies functi	three (conse	cutive	points	s for one	h do	vico in	Flag s	signal: none	9
seri	es for	the	scope	of de	vice u	sage	10115			ii ue				
E:	kplana	atio		S ₁: lim bir coi	Low Lit of Lary f Secu	ver lir bina floatii utive	nit o ry flo ng p point	f bina pating oint r ts.	ary flo g poir nume	batin ht hi rical	g poi umbe valu	nt nu er in 1 es. D	mber in r range col): Results	range comparison. S ₂ : Uppe mparison. S : Comparison o s of comparison, occupies
			•	Co nu the	mpai mber e rest	rison lowe ults o	of b er lim f con	inary it valu nparis	floati ue S ₁ son ai	ng p and re ex	ooint bina xpres	nume ry floa sed ir	erical valu ating point n D .	e S with binary floating poir t number upper limit value S
				lf t tra co	he sonsfor mpar	ourc m th ison.	e op ie co	eran onstai	d S ₁ c nt to	or S 2 a b	2 desi oinary	gnate float	es a const ting-point	tant K or H, the command wi number for the purpose o
			•	When the lower limit binary floating point number S_1 is greater than th limit binary floating point number S_2 , a command will be issued to comparison with the upper and lower limits using the binary floating point lower limit value S_1 .										
E	Examp	ple		Wł	nen tl	ne de	esign	ated	devic	e is	M0, i	t will a	automatic	ally occupy M0~ M2.
				Wł Or co	nen X I. WI ntinu	(0=O nen e in t	n, the X0=0 he X0	e DEZ Off, ti 0=Off	ZCP o he E f state	comi ZCP e.	mand ' con	will b nman	be execute d will no	ed, and one of M0~M2 will b ot execute, and M0~M2 wi
				Ple	ease	use t	he R	ST o	r ZRS	ST co	omma	and to	clear the	e result.
					0									
				ГĹ	Ĩ			EZC		D0		010	D20	мо
						мо								
						ЩĻ		— v	Vhen	(D1	, D0)	> (D2	1, D20), N	M0 is On.
						M1								
					H	Ξŀ		— V	Vhen	(D1	, D0)	≦(D2	1, D20) ≦	(D11, D10), M1 is On.
						М2 ⊣⊢		_ v	Vhen	(D2	1, D2	0) > (I	D11, D10)), M2 is On.

AF 11	יו 6 D	F	AD	Ρ		C	ङ	D		Ar	Angle \rightarrow Radian						
	Bit	devi	ce			V	Vord	devic	e			16-bit command					
	Х	Y	М	K H KnX KnY KnM T C		D											
S				* *								22 hit command (0 STED)					
D											*	DRAD Continuous DRADP Pulse					
Note Plea serie	es on o ase ref es for	opera fer to the s	and us the f cope (age: unction of dev	on spe /ice u	ecifica sage	tions 1	table f	or eac	h dev	vice in	Flag signal: none					
 Explanation S: data source (angle). D: result of transformation (radian). Uses the following formula to convert angles to radians. Radian = Angle × (π/180) When X0=On, the angle of the designated binary floating point number will be converted to radians and stored in (D11, D10), with the content 																	
				of a	a bin: <0 	D 11		g poi	nt nui D0 0	Ang Bina RAE Bina	D10 Jle va ary flo D vali	alue bating point ue(Angle value x π/180) bating point					

API 117	D	D	EG	Ρ		C	5) (D		F	Radian \rightarrow Angle					
E	Bit c	levic	e			V	Vord	devic	e			:16-bit command				
X		Y	M	K	Н	KnX	KnY	KnM	T	С	D					
S				*	*						*					
D											*	32-bit command (9 STEP)				
Notes Please series	on o refe for ti	perar er to he sc	nd us the fu ope c	age: unction of dev	on spe /ice u	ecifica sage	tions f	able f	DDEG Continuous DDEGP Pulse execution type execution type Flag signal: none							
Expla	 S: data source (radian). D: results of transformation (angle). Uses the following formula to convert radians to an angle. Angle = Radian × (180/π) When X0=On, angle of the designated binary floating point number (D1, D0). 															
Exa	mpl	e		Wh rad cor	ien X ians isisti	(0=O will k ng of	n, an be co a bir	igle c invert nary f	of the ted to loatin	de an ng p	signat angle oint n	ted binary floating point number (D1, D0) in e and stored in (D11, D10), with the content number.				
S D1 D0 RAD w Binary) value Iry floating point				
D 11 D 10 Angle v Binary												value(RAD value x 180/π) floating point				

AF 12	יו 0	D	EAC	D P		S 1	S2		D	A	dding	binary floating point numbers
	Bi	t de	evice			V	Vord	devic	e			16-bit command
	X	Y	′ M	K	Н	KnX	KnY	KnM	T	С	D	· - · - · - · - · ·
S1				*	*						*	
S2				*	*						*	<u>32-bit command</u> (9 STEP)
D											*	DEADD Continuous DEADDP Pulse
Not	es or	n op	erand	usage:								
Plea seri	ase r es fo	refer or the	⁻ to th e scop	e functi be of de	on sp vice u	ecifica sage	tions 1	able f	or ead	ch dev	vice in	Flag signal: none
E	plar	natio	on	S ₁	aug	end.	S₂ : a	dden	d. D :	sum	•	
				Wł reę Ad	nen ti gister ditior	he co desi n is p	onten gnate erfori	t of th ed by med o	ne re S 1, a entire	giste and th ely us	r des ne res sing b	ignated by \mathbf{S}_2 is added to the content of the sult is stored in the register designated by \mathbf{D} . inary floating-point numbers.
				lf t tra	he s nsfor	ourc m tha	e op at coi	e rano nstan	d S ₁ (It into	or S₂ ⊳ a bii	desi nary	gnates a constant K or H, the command will floating point number for use in addition.
			•	In "co the co	the ontinu e regi mma	situa lous ister nds (exec will p DEA	whe ution perfor DDP)	en S " cor m ac) are	₁ and nmar dditio gene	d S₂ nd is n on∉ erally	designate identical register numbers, if a employed, when conditional contact is On, ce during each scan. Pulse execution type used under ordinary circumstances.
E	xam	nple		Wł floa	nen X ating	(0=0 poin	n, a l t num	binar ıber (y floa (D3, I	ating D2), a	point and t	number (D1, D0) will be added to a binary he results stored in (D11, D10).
					×0 	D	EADI	D	D0		D2	D10
			-	Wł (wł the	nen X nich I e resu	(2 =C has b ults st)n, a been tored	binar autor in (C	ry floa matic 021, [ating ally c D20).	point conve	number (D11, D10) will be added to K1234 erted to a binary floating-point number), and

X2				
	DEADD	D10	K1234	D20

AF 12	יו 1	D	E	SUB	P		S 1	<u>(S2</u>		D	S	Subtra	ction of binary floating point numbers
	В	it d	evi	ce			V	Vord	devic	e			16-bit command
	Х		Y	М	K	Н	KnX	KnY	KnM	T	С	D	
S1					*	*						*	22 hit command (12 STED)
S2					*	*						*	DESUB Continuous DESUBE Pulse
D		<u> </u>										*	execution type execution type
Plea	es o ase es fo	refe or th	er to ne s	the f	function of dev	on spe /ice u	ecifica sage	tions f	table f	or each	n de	evice in	Flag signal: none
Ex	pla	nat	ion		S 1:	minu	uend.	. S₂ : s	subtr	ahend	l. D	: diffe	rence.
				•	Wh of des nur If t trai	ien the ri signa mber he s e	ne co regist ited I s. ourc m tha	entent ter de by D e ope at con	t of th esign ; sub e ran o nstan	ne reg ated otractio d S 1 o at into	iste by on r S a b	er desi S ₁ , th is per 2 desig inary 1	gnated by S ₂ is subtracted from the content le difference will be stored in the register formed entirely using binary floating-point gnates a constant K or H, the command will floating point number for use in subtraction.
				•	In "co the cor	the ntinu regi nma	situa ious ster nds (exec will p DES	whe ution perfor UBP)	en S ₁ " com m ado are g	an ma ditio	nd S ₂ and is on one erally	designate identical register numbers, if a employed, when conditional contact is On, ce during each scan. Pulse execution type used under ordinary circumstances.
	Exa	mp	le)	Wh bin	ien X ary f	(0=O loatin	n, a ig po	bina int nu	ry floa umber	tin (D	g poir 3, D2)	t number (D1, D0) will be subtracted to a , and the results stored in (D11, D10).
						×0 	D	ESU	в	D0		D2	D10
				•	Wh K12 nur	ien X 234 nber	(2 =C (whio), and	Dn, th ch h d the	ie bin as b resu	ary flo een a lts sto	oati aut red	ing po omatio I in (D	int number (D1, D0) will be subtracted from cally converted to a binary floating-point 11, D10).

API 122	D	E	MUL	- P		S 1	(<u>S</u> 2		D	M	ultipli	cation of binary floating point numbers
	Bit	devi	се			V	Vord	devic	e			16-bit command
	X	Y	M	K	Н	KnX	KnY	KnM	T	С	D	· - · - · - · - · · - · ·
S1				*	*						*	
S2				*	*						*	<u>32-bit command (13 STEP)</u>
D											*	DEMUL Continuous DEMULP Pulse
Notes	on	opera	and u	sage:								execution type execution type
Please series	e re for	fer to the s	the cope	function of dev	on spe /ice u	ecifica sage	tions t	table f	or ead	ch dev	rice in	Flag signal: none
Expl	ana	ition		S 1:	mult	iplica	and. S	S₂ : m	ultipli	ier.	D:	product.
			•	Wh the des nur	ien tl reg signa nber he s	ne co lister lted k s. ourc	onten des by D ;	t of th ignat mult	he re ed b tiplica d S ₁ (gister by S 2 ation	r des 2, the is pe desie	ignated by S ₁ is multiplied by the content of e product will be stored in the register erformed entirely using binary floating-point
			_	trai mu	nsfor Itiplic	m th cation	nat o n.	const	ant	into	a b	inary floating point number for use in
			•	In "co the typ	the ntinu regi e col	situa ious ister mma	ition exec will p nds (whe ution perfor DEM	en S " con m m IULP)	₁ anc nmar ultipli) are	l S₂ nd is icatio gene	designate identical register numbers, if a employed, when conditional contact is On, n once during each scan. Pulse execution rally used under ordinary circumstances.
Ex	am	ple		Wh bin reg	ien X ary f jister	(1=O loatir desig	n, the ng po gnate	e bina bint n ed by	ary flo iumbo (D21	oating er (D 1, D2	g poi 11, [0).	nt number (D1, D0) will be multiplied by the D10), and the product will be stored in the
					×1 	D	EMU	L	D0		010	D20
			•	Wh K12 nur	ien X 234 nber	(2 =0 (whic), and	On, th ch h d the	ne bir as b resu	hary f been Its ste	floatir auto ored	ng po matio in (D	bint number (D1, D0) will be multiplied from cally converted to a binary floating-point 11, D10).

	DEMUL	K1234	D0	D10
l				

AF	2 P		E	DIV			(\$1)	(S2		D	Di	visio	n of binar	v floating point numbers
12	:3	D			P									, , , , , , , , , , , , , , , , , , , ,
	Bi	it d	evi	ce			V	Vord	devic	e			16-bit com	imand:
	Х	\ \	Y	Μ	Κ	Н	KnX	KnY	KnM	T	С	D		
S1					*	*						*	,	
S2					*	*						*	32-bit com	mand (13 STEP)
D												*		Continuous DEDIVP Pulse :
Not	es o	n op	oera	ind us	age:									
Ple: seri	ase es fo	refe or th	er to ne so	the f	uncti of de	on spe vice u	ecifica sage	tions t	able f	or each	n dev	vice in	Flag signa	l: none
E	xpla	nati	ion		S₁	: divi	dend.	. S ₂: (diviso	or. D : 0	quot	ient a	and rema	inder.
					W	hen t	he co · desi	nten	t of th	ne regi	ister	[·] desi	gnated by	y \mathbf{S}_1 is divided by the content of the stored in the register designated
					by	D ; d	ivisio	n is p	perfor	med e	entir	ely u	sing bina	ry floating-point numbers.
					lf t tra	he s nsfor	ourco m tha	e op e at cor	e rano nstan	d S ₁ o t into	r S₂ a biı	desi nary	gnates a floating p	constant K or H, the command will oint number for use in division.
	Exa	mpl	le	•	W bii de	hen nary esign	X1=C floatii ated l	Dn, th ng po by (D	ne bir Dint n 121, E	nary fl iumbe 020).	oatii r (D	ng po 11, E	oint numb 010), and	per (D1, D0) will be divided by the the quotient stored in the register
						X1)EDI\	/	D0		D10	D20	

■ When X2 =On, the binary floating point number (D1, D0) will be divided by K1,234 (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).

X2				
	DEDIV	D0	K1234	D10
I				

API 124		D E	EXP	Ρ		C	<u>s</u> (D		В	inary	floating point number obtain exponent		
E	Bit	dev	ice			V	Vord	devic	e			16-bit command		
	<	Y	М	K	Н	KnX	KnY	KnM	Т	С	D			
S				*	*						*			
D											*	<u>32-bit command (9 STEP)</u>		
Notes	on	oper	and u	sage:								DEXP Continuous DEXPP Pulse		
Please	e re	eter to	the the	functio	on spe	ecifica	tions t	table t	or eac	h de	vice in			
series	101	ine s	cope	ordev	nce u	sage						Flag signal: none		
Expl	an	ation		S : 0	S: operation source device. D: operation results device.									
				Taki	Taking e =2.71828 as a base, S is the exponent in the EXP operation.									
				[D ·	[D +1 , D]=EXP[S +1 , S]									
			•	Valio de pe flc	d reg esign erforr pating	ardle ated ned u poir	ess of regi using nt nui	f whe ster float mber.	ther D m ing-p	the o lust oint	conter have numb	nt of S has a positive or negative value. The a 32-bit data format. This operation is ers, and S must therefore be converted to a		
				Con	itent	of op	eran	d D =	e ^s ;	e=2.	.7182	8, S is the designated source data		
Ex	am	nple)	When M0 is On, the value of (D1, D0) will be converted to a binary floating poir number, which will be stored in register (D11, D10).										
			•	Whe its v	en M alue	1 is (is a l I	Dn, th Dinar M	ne EX y floa 0	(P op iting	erat ooin	ion is t num	performed on the exponent of (D11, D10); ber stored in register (D21, D20).		
						 						DFLT D0 D10		
							N /	1						
								1						
												DEAF DIU DZU		

END

API 125)	LN	Ρ		C	s (Ð		В	inary	floating point number obtain logarithm		
	Bit	dev	vice			V	Vord	devic	e			16-bit command		
	X	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D	: _ : _ : _ : _ :		
S				*	*						*	,		
D												<u>32-bit command (9 STEP)</u>		
Notes	s on	oper	and u	sage:								DLN Continuous DLNP Pulse		
Pleas	se re	fer t	o the	functio	on spe	ecifica	tions	table f	or eac	h de	vice in			
series	s tor	the s	scope	of de	vice u	sage						Flag signal: none		
Exp	lana	ation	S: operation source device. D: operation results device.											
				Tak	Taking e =2.71828 as a base, S is the exponent in the EXP operation.									
				[D +1 , D]=EXP[S +1 , S]										
			•	Vali des usir poir	d reg ignat ig flo it nui	ardle ed re pating mber	ess of egiste J-poir	f whe er D n nt nu	ther t nust h mbers	he c nave s, a	conter e a 32- nd S	nt of S has a positive or negative value. The bit data format. This operation is performed must therefore be converted to a floating		
				Cor	itent	of op	eran	d D =	es;e	e=2.	.7182	8 , S is the designated source data		
E	xam	ple		Who num	en M nber,	0 is (whic	Dn, th h will	ne va I be s	lue of tored	f (D1 in r	1, D0) egiste	will be converted to a binary floating point er (D11, D10).		
When M1 is On, the EXP operation is performed on the exponent of (D11, D10) its value is a binary floating point number stored in register (D21, D20). M0 DFLT D0 D10 M1 DLN D10 D20										performed on the exponent of (D11, D10); ber stored in register (D21, D20). DFLT D0 D10 DLN D10 D20				
												END		

AP 12	'l 7 C) ES	QR	Ρ		C	<u>s</u> (D		Bi	nary	floating point number find square root
	Bit	devi	се			V	Vord	devic	e			16-bit command
	X	Y	M	K	Н	KnX	KnY	KnM	T	С	D	· - · - · - · - · · - · ·
S				*	*						*	
D											*	<u>32-bit command (9 STEP)</u>
Note Plea	es on se re	opera fer to	nd us the f	age: unctic	n spe	cificat	ions t	able fo	or eac	h dev	/ice in	DESQR Continuous DESQR Pulse execution type P execution type
serie	es for	the so	cope o	of dev	ice us	age						Flag signal: none
Ex	plana	ation		S :	sour	ce de	vice	for wl	hich s	squa	re ro	ot is desired D : result of finding square root.
				Wł res is p	nen tl sult is perfo	ne sq s tem rmed	uare porar entir	root rily st rely u	is tak ored sing l	en o in th bina	of the le reg ry floa	content of the register designated by S , the gister designated by D . Taking square roots ating-point numbers.
			•	lf tl tha	ne so It cor	ource Istant	oper t into	rand : a bin	S refe	ers te loatii	o a co ng po	onstant K or H, the command will transform bint number for use in the operation.
E	xamp	le		Wł D0	nen λ), an	(0=O d the	n, the resu	e squ It is s	are r torec	root i d in t	is tak he re	en of the binary floating point number (D1, gister designated by (D11, D10).
					┝	X0 ┨┠──		DE	SQR		D0	D10
					√ B p	(D1, inary flo oint	D0) oating		(D11, Binary f point	, D1(floating)) g	
			•	Wr cor D1	nen X nvert 0).	(2 =C ed to	n, th a b	e squ inary	iare r floai	oot i ting-	s tak point	en of K1,234 (which has been automatically number), and the results stored in (D11,

AP	'l 9 [כ	INT	Ρ		C	S	D		Bi nı	nary ımbe	floating point number \rightarrow BIN whole r transformation
	Bit device Word device										16-bit command	
	Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D	
S											*	
D											*	<u>32-bit command</u> (9 STEP)
Note	s on c	perar	nd usa	ge:								DINT Continuous DINTP Pulse
Plea	se ref	er to	the fu	nction	n spec	cificatio	ons ta	ble fo	r eac	h dev	ice in	execution type execution type
serie	s for t	he sc	ope of	devic	e usa	ge						Flag signal: none
E	plana	ation		S : th	e so	urce	devid	e to	be tra	ansfo	orme	d. D : results of transformation.
			•	The poin BIN	cont t nun whol	ent o nber 1 e nur	f the forma nber	regis at into float	ter d b a B ing p	lesigi IN wi oint i	hatec hole i humb	d by S is transformed from a binary floating number, and is temporarily stored in D . The per will be discarded.
				The	actic	on of t	his c	omm	and	is the	e opp	osite of that of command API 49 (FLT).
E	Example When X0=On, the binary floating po BIN whole number, and the result floating point number will be discard									g po sult i arde	int number (D1, D0) is transformed into a s stored in (D10); the BIN whole number d.	
							X0 ⊣					

API 131 D C	os	Ρ		C	S	Ð		Bin	ary	floating point number COS operation
Bit devi	ce			V	Vord	devic	e			16-bit command
X Y S	M nd usag the fur	K * ge:	H *	KnX	KnY ions	table fo	T or each	C devic	D * *	<u>32-bit command (9 STEP)</u> DCOS Continuous DCOSP Pulse execution type execution type
series for the sc	ope oi	devi	ce us	age						Flag signal: none
Explanation	•	S : t The by	the d e soເ flag l	lesigi urce M10 ⁻	nateo desi <u>(</u> 18.	d sou gnate	rce valı d by S	ue. [can	D: th be	e COS value result. given as radians or an angle; this is decided
		Wh val	ien N ue is	M101 equ	8=O al to	off, the (angl	e opera e ×π/18	ation 80).	ı is	in radians mode, where the radians (RAD)
	•	Wh 0°≤	ien N ≨ ang	/101 le <3	8=0 860°.	n, the	opera	tion	is ir	the angle mode, where the angular range is
		Wh	nen c	alcul	atior	ı resu	lts yield	d 0, I	M10)20=On.
		The	e CO)S ob	taine	ed fro	m the s	sour	ce v	alue designated by S is stored in D .
		The	e follo	owing	g figu	ure dis	splays t	the r	elat	ionship between the arc and SIN results:
							R			S: Radian
							1			R: Result (COS value)
			-2 π	- <u>3</u> 2	-2π	$\frac{\pi}{2}$	0	<u>Å</u>		$\pi \frac{3}{2}\pi 2\pi$ S
Example	•	Wh D0 floa	ien X) in r ating	(0=O adiai poin	n, th ns w t nur	ie CO ill be nber.	S value stored	e of in (E	the 011,	designated binary floating point number (D1, D10), with the content consisting of a binary
		0 		- D(cos		00	D1(0	
	<u>(</u> \$	> [D) 1	Т Л	D 0	Bi	\D v inar	valu y fle	e(Angle value x π/180) oating point
) [[D 1	Ť	D 10	Bi	OS v inar	val y fl	ue oating point

API 132 D TAN	Ρ	S	Ð	Bina	ary floating point number TAN operation
Bit device	Word device				16-bit command
X Y M	K H	KnX KnY	KnM T	С	
D	* *				* <u>32-bit command (9 STEP)</u>
Notes on operand usage: DICAN Continuous DTAN Pulse execution type execution type					
series for the scope	of device usage				Flag signal: none
Explanation	S: the o	designated	source v	/alue. D	e: the TAN value result.
	The source designated by S can be given as radians or an angle; this is decide flag M1018.				
-	When M1018=Off, the operation is in radians mode, where the radians (RAD) value is equal to (angle $\times \pi/180$).				
-	When M1018=On, the operation is in the angle mode, where the angular range is 0° angle <360°.				
-	When calculation results yield 0, M1020=On.				
-	The TAN obtained from the source value designated by S is stored in D .				
	The following figure displays the relationship between the arc and SIN results:				
					S: arc angle data R: result (TAN value)
	<u>2</u> π ·	3/2π /2π		π	$\frac{3}{2\pi}$ 2π S
Example When X0=On, the TAN value of the designated binary floating point number (D1, D0) in radians (RAD) will be stored in (D11, D10), with the content consisting of a binary floating point number.					
X0 DTAN D0 D10					
S D 1 D 0 RAD value (Angle value x π / 180)					

AF 13	יו 6 נ	D S	SINH	Ρ		C	<u>s</u> (D		Bi	nary	floating point number SINH operation		
Bit device Word device <u>16</u>											16-bit command			
	X Y M K H KnX KnY KnM T C D													
S				*	*						*			
D									<u>32-bit command (</u> 9 STEP)					
Note Plea	es on o ise re	opera fer to	nd us the f	age: unctio	n spe	cificat	ions t	able fo	or eac	h dev	ice in	DSINH Continuous DSINHP Pulse execution type execution type		
Sen	55 101	uie su	ope c		ce us	aye			Flag signal: none					
E	Explanation S: the designated source (binary floating point number). D: the SINH value result.													
\subseteq				SIN	NH v	alue =	=(e ^s -0	e ^{-s})/2						

Example

■ When X0=On, the SINH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.

AF 13	ף 7	DC	OSF	I P		C	S (D		E	Binary floating point number COSH operation						
	Bi	t dev	vice			V	Vord	16-bit command									
	Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D						
S				*	*						*	,					
D											*	<u>32-bit command (9 STEP)</u>					
Not Plea	Notes on operand usage: Please refer to the function specifications table for each device in execution type execution type execution type																
seri	series for the scope of device usage Flag signal: none																
E	Explanation S: the designated source (binary floating point number). D: the COSH value result.																
\subseteq	■ COSH value =(e ^s +e ^{-s})/2																
_																	

■ When X0=On, the COSH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.

S

D

D 1

D 11

D 0

D 10

AF 13	PI TANH TANH 8 D TANH										Binary	floating point number TANH operation		
	Bit	t dev	ice			V	Vord	devic	16-bit command					
	Х	Y	М	Κ	Н	KnX	KnY	KnM	Т	С	D			
S				*	*						*			
D											*			
Not	es on	n oper	and u	sage:					DIANH Continuous DIANHP Pulse					
Plea	ase r	efer to	o the	execution type execution type										
seri	eries for the scope of device usage Flag signal: none													
E	 Explanation S: the designated source (binary floating point number). D: the TANH value result. tanh value =(e^s-e^{-s})/(e^s+e^{-s}) 													
E	 Example When X0=On, the TANH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number. 													
	X0 DTANH D0 D10													

binary floating point

TANH value binary floating point

AP 16	0	– T	CMF	• –	<u>(S1</u>	03		<u>S</u> 3	S	D		omparison of calendar data					
	Bit	dev	ice			V	Vord	devic	e								
	Х	Y	М	K	Н	KnX	KnY	KnM	Т	С	D	16-bit command (11 STEP)					
S1				*	*	*	*	*	*	*	*	TCMP Continuous TCMPP Pulse					
S2				*	*	*	*	*	*	*	*	execution type execution type					
S3				*	*	*	*	*	*	*	*	32-bit command					
S									*	*	*						
D		*	*									·					
Note Plea serie	es on ise re es foi	opera efer to r the s	and u o the scope	sage: functio of devi	n spe ice us	ecifica sage	tions t	able f	or ead	ch dev	ice in	Flag signal: none					
Ex	plan	ation)	S ₁: min the Res	S ₁ : Sets the hours of the comparison time, setting range is "K0~K23." S ₂ : Sets the minutes of the comparison time, setting range is "K0~K59." S ₃ : Sets the seconds of the comparison time, setting range is "K0~K59." S : current calendar time. D : Results of comparison. Compares the time in hours, minutes, and seconds set in S ₁ - S ₃ with the current												
			•	Compares the time in hours, minutes, and seconds set in $S_1 - S_3$ with the current calendar time in hours, minutes, and seconds, with the results of comparison expressed in D .													
	 S The hour content of the current calendar time is "K0~K23." S +1 comprises the minutes of the current calendar time, and consists of "K0~K59." S +2 comprises the seconds of the current calendar time, and consists of "K0~K59." 																
				The com con com	cur nmar tent nmar	rent nd af valu nd wi	caler ter u e of Il not	ndar f sing f S exe exec	time the T ceed cute,	desig RD o s the and I	nate comn rano V106	d by S is usually compared using the TCMP hand to read the current calendar time. If the ge, this is considered an operating error, the 8=On.					
E	xam	^{nple} ■ When X10=On, the command will execute, and the current calendar time in D20~D22 will be compared with the preset value of 12:20:45; the results will be displayed in M10~M12. When X10 On→Off, the command will not be executed, but the On/Off status prior to M10~M12 will be maintained.															
			If results in the form of ≥, ≤, or ≠ are needed, they can be obtained by series and parallel connection of M10~M12.														
)	×10 ┨┠────		тс	MP	К	12	ĸ	20	K45 D20 M10					
			·		M´ —	10	– ON	when	12: 2	0:45	>	D20 (hr) D21(min) D22(sec)					

 $M12 = \frac{D20 (hr)}{D21(min)}$ $M12 = \frac{D20 (hr)}{D22 (sec)}$ $M12 = \frac{D20 (hr)}{D22 (sec)}$

D20 (hr)

D22(sec)

M11

AP	<u>ו</u> ו															
16	1	- T	ZCP	Ρ		S 1	S 2) (D	С	omparis	son of c	alendar da	ata	
	Bit	dev	ice			V	Vord (devic	е			16-bit co	mmand	(0 STEP)		· · · · · · · · · · · · · · · · · · ·
	Х	Y	М	Κ	Н	KnX	KnY	KnM	Т	С	D	TZCP	Cont	tinuous : TZ	CPP	Pulse
S1									*	*	*	:	execu	tion type	e	xecution type
S2									*	*	*	·32-bit co	ommand			
		*	*						<u>^</u>	^	<u>^</u>	<u> </u>	i		- :	_
Note	es on	oper	and us	age:												
Plea	ase re	fer to	the f	unctio	on spe	ecifica sage	tions t	able fo	or ead	ch dev	ice in	Flag sigr	nal: none	•		
Ex	plana	ation		S ₁ :	Set: npar	s the ison t	lowe	er lin S : cu	nit of Irren	f the t cale	com ndar	parison time. D	time.): Resu	S ₂ : Sets the set of the set o	he upp barison.	er limit of the
			•	Pe cur	rform rent	ns rar caler	nge c ndar t	ompa time	ariso desid	n by o anate	com d bv	baring th S with	he houi the lov	rs, minutes ver limit of	s, and s the co	seconds of the mparison time
				set res	as s ults (S₁ an of co	d the npari	uppe son i	er lin n D .	nit of	the o	compari	son tim	ne set as S	₂ , and	expresses the
			•	S ₁ cor	、 S ₁ mpar	+1 、 ison f	S ₁ +2 time.	2: Se	ts th	e hou	irs, i	ninutes,	, and s	econds of	the low	ver limit of the
			•	S₂ cor	` S ₂ mpar	+1、 ison t	S₂ + 2 time.	2: Se	ts th	e hou	ırs, r	ninutes,	, and s	econds of	the upp	per limit of the
			•	S ·	S +	1 • S	+2: T	he h	ours	, minu	utes,	and see	conds o	of the curre	ent cale	ndar time
			•	The cor rea cor	e D(mpar nd the nside) de: ison (e curr ered a	signa using ent c in ope	ted the alence eratir	by t TZCF dar ti ng er	he S Com me. If ror, th	list imar f the ie co	ed in t id after i value o mmand	this pro using th f S ₁, S₂ I will no	ogram is ne TRD con , or S exce t execute,	usually mmand eeds the and M1	v obtained by l in advance to e range, this is 1068=On.
			•	Wh upp lim will	nen tl per li it val l be (he cu mit va ue S On ur	rrent alue (1 and 1 der c	time S ₂ , D S is other	S is will b grea	less be On ater th ditions	than i. Wh ian t s.	the low nen the he uppe	ver limit current er limit	time S 1 a time S is g value S 2, I	and S is greater D +2 wi	s less than the than the lower Il be On; D +1
E	zamp	ble	•	Wł Wł the	nen) nen) X10	(10=) (10=) =Off	On, t Off, tł state	he Tž ne Tž	ZCP ZCP	comi comn	mand	d execu will not	ites, ar t execu	nd one of ∣ ite, and M	M10-M ⁻ 10-M12	12 will be On. will remain in
			ΙX	10	Г						1			1		
			\vdash	Г		TZC	P	D0		D20		D10	M10			
			I		M1 	0 Nwhei		D0 (h D1 (m D2 (se	r) nin) ec)	> [D10 D11 (D12 ((hr) min) sec)				
					M1 — - ON	1 when		D0 (h D1 (m D2 (s	r) nin) ec)	<	D10 D11 (D12 ((hr) min) ≦ sec)	D20 D21 D22	(hr) (min) (sec)		
					M1 ——] - ON	2 when	_				D10 D11 (D12 ((hr) min) > sec)	D20 D21(D22	(hr) (min) (sec)		

AF 16	יו 2	- T/	ADD	Ρ		3	5D (<u>S2</u>)	Ð		C	Calendar data addition	
	Bit	devi	ce			V	Vord	devic	e			16-bit command (7 STEP)	
	X	Y	Μ	K	Н	KnX	KnY	KnM	T	С	D	TADD Continuous TADDP Pulse	
S1									*	*	*	execution type execution type	
S2									*	*	*	22 hit command	
D									*	*	*		
Note Plea serie	es on ase re es for	opera efer to the s	and us the f cope	sage: unction of dev	on spe vice us	ecifica sage	tions 1	able fo	Flag signal: M1020 Zero flag M1022 Carry flag M1068 Calendar error				
E>	Explanation S ₁ : time addend. S ₂ : time augend. D: time sum.												
The calendar data in hours, minutes, and second calendar data in hours, minutes, and seconds d stored as hours, minutes, and seconds in the rec											, and seconds designated by S_2 is added to the d seconds designated by S_1 , and the result is ids in the register designated by D .		
			•	lf th con cod	ne va nmar le 0E	lue o nd w 1A(H	of S ₁ o ill_no HEX)	or S₂ t exe	exce cute	eds t , M1(he r 067,	ange, this is considered an operating error, the M1068=On, and D1067 will record the error	
			•	lf t M1	he r 022=	esult On,	s of and l	add D will	ition disp	are lay th	grea le re	ater than or equal to 24 hours, carry flag esults of addition minus 24 hours.	
	If the results of addition are equal to 0 (0 hours, 0 minutes, 0 seconds), zero flag M1020=On.												
E	 Example When X10=On, the TADD command will be executed, and the calendar data in hours, minutes, and seconds designated by D0 to D2 will be added to the calendar data in hours, minutes, and seconds designated by D10 to D12, and the results are stored as a total number of hours, minutes, and seconds in the registers designated by D20 to D22. 												
			ιх	10									

AP	ן א	Т	SUB	P		3	51 (<u>S</u> 2	Ð		С	alendar data subtraction
	Bit	dev	ice			v	Vord	devic	e			16-bit command (7 STEP)
	X	Y	M	K	Н	KnX	KnY	KnM	Т	С	D	TSUB Continuous TSUBP Pulse
S1									*	*	*	execution type execution type
S2									*	*	*	32-hit command
D									*	*	*	
Note Plea serie	es on se re es for	oper fer to the s	and us the f scope	sage: unction of dev	on spe /ice u	ecifica sage	tions 1	table f	or ea	ch dev	vice ir	 Flag signal: M1020 Zero flag M1022 Carry flag M1068 Calendar error
Ex	plana	ation)	Sul the is t D.	time otrac cale empo	minu ts the endar oraril	uend e cale data y sto	. S₂ : t endar i in ho red a	ime ⁻ data ours, s ho	auge a in h minu urs, r	nd. I ours utes, ninu	D : time sum. a , minutes, and seconds designated by S_2 from and seconds designated by S_1 , and the result tes, and seconds in the register designated by
			•	lf th cor coc	ne va nmai de 0E	ilue c nd w E1A (l	of S 1 (ill no HEX)	or S₂ ot exe).	exce ecute	eeds , M1	the r 067,	ange, this is considered an operating error, the M1068=On, and D1067 will record the error
			•	lf s tha D .	ubtra t neç	action gative	i resi e nun	ults in nber	a ne plus	egativ 24 ho	e nu ours	mber, borrow flag M1021=On, and the result of will be displayed in the register designated by
				lf th M1	ne re 020=	sults ⊧On.	of su	ubtrac	tion	are e	qual	to 0 (0 hours, 0 minutes, 0 seconds), zero flag
E	xamp	ble	•	Wh hou cal res des	ien) urs, r enda ults a signa	(10=) ninut ar dat are st ited b	On, t es, a ta in tored by D2	the T nd se hour as a 20 to l	ADD econe s, m tota D22.	com ds de inute I num	imar sign s, ar iber	nd will be executed, and the calendar data in ated by D10 to D12 will be subtracted from the nd seconds designated by D0 to D2, and the of hours, minutes, and seconds in the registers
				× -	10	-[TSUI	В	D0		D10	D20
					D0 D1 D2 20	20(20(5(): 2	(hr) min sec 0: {) ;) 5	_	D1 D1 D1	0 1 1 3 2 3 4: 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

AF 16	91 6	- 7	ſRD	Ρ			C	D			С	Calendar data read				
	Bit	dev	ice			V	Vord	devic	e			16-bit command (3 STEP)				
	Х	Y	Μ	Κ	Н	KnX	KnY	KnM	Т	С	D	TRD Continuous TRDP Pulse				
D									*	*	*	execution type execution type				
Not Ple seri	es on ase re es foi	oper efer to the s	and u o the scope	sage: functio of dev	on spe /ice u	<u>32-bit command</u>										
												 Flag signal: none 				

- **S**₁: time minuend. **S**₂: time augend. **D**: time sum.
 - **D**: device used to store the current calendar time after reading.
- The EH/EH2/SV/EH3/SV2/SA/SX/SC main units have a built-in calendar clock, and the clock provides seven sets of data comprising year, week, month, day, hour, minute, and second stored in D1063 to D1069. The TRD command function allows program designers to directly read the current calendar time into the designated seven registers.
- D1063 only reads the two right digits of the Western calendar year.

Example

Explanation

- When X0=On, the current calendar time is read into the designated registers D0 to D6.
- In D1064, 1 indicates Monday, 2 indicates Tuesday, and so on, with and 7 indicating Sunday.

I X0		
	TRD	D0

Special D	Item	Content		General D	Item
D1063	Year (Western)	00~99	+	D0	Year (Western)
D1064	Weeks	1~7	+	D1	Weeks
D1065	Month	1~12	+	D2	Month
D1066	Day	1~31	+	D3	Day
D1067	Hour	0~23	+	D4	Hour
D1068	Minute	0~59	-	D5	Minute
D1069	Second	0~59	\rightarrow	D6	Second

AP 17	1 0 D	GRY	Ρ			S		D		В	IN→GRAY code transformation	
	Bit d	evice			V	Vord	devic	e			16-bit command (5 STEP)	
	X	Y M	K	Н	KnX	KnY	KnM	Т	С	D	GRY Continuous GRYP Pulse	
S			*	*	*	*	*	*	*	*	execution type execution type	
D						*	*	*	*	*	32-bit command (9 STEP)	
Note Plea serie	es on o lse refe es for th	perand u r to the ne scope	sage: functio of dev	on spe /ice u	ecifica sage	tions	table f	DGRY Continuous DGRYP Pulse execution type Flag signal: none				
Fx	nlanat	on I	S : :	sour	ce de	vice.	D : d	GRAY code.				
			Tra coc	nsfo le, w	rms t hich	he c is sto	onter ored i	value) of the device designated by S to GRAY esignated by D .				
The valid range of S is as shown below; if the considered an error, and the command will not explanately as the command will not explan											below; if this range is exceeded, it will be nd will not execute.	
			16-	bit co	omma	and:	0~32	,767				
		•	32-	bit c	omm	and:	0~2,	147,4	183,6	47		
E	xample	•	Wł D0	nen λ	<0=O	n, th	e cor	istan	t K65	13 v	vill be transformed to GRAY code and stored in	
	X0 HH GRY K6513 D0											
ы15 b0 К6513=Н1971 0001100101110001												
h15 b0												
			GR/	AY C	ODE	6513	3 0 0	01	0 1	D 1 1		

DO

API 171)	GBIN	P			S		C		G	SRAY code \rightarrow BIN transformation		
	Bit	de	vice			v	Vord	devic	e			16-bit command (5 STEP)		
	X	Y	M	K	Н	KnX	KnY	KnM	Т	С	D	GBIN Continuous GBINP Pulse		
S				*	*	*	*	*	*	*	*	execution type execution type		
D							*	*	*	*	*			
Notes	s on	ope	rand u	sage:								DGBIN Continuous DGBINP Pulse		
Pleas	se re	eter	to the	functic of dov	on spe vice ut	ecifica	tions	table f	or ead	ch dev	lice II	execution type execution type		
30110	5 101	uie	scope	UI UEV	nce u	saye								
				C · .		a da	vico	ucod	to of	oro (יאסי	• Flag signal: none		
Exp	lana	atio	n) 🗖	J. tron	sourc	be ue motio	vice	useu	เบรเ	orec		f code. D. device used to stole bin value alter		
				uai	15101	mau	<i>л</i> т.							
				The	e GF	RAY	code	corr	espo	nding	g to	the value of the device designated by S is		
				trar	nsfor	med	into a	a BIN	valu	ie, wł	hich	is stored in the device designated by D .		
			_	-										
	This command will transform the value of the absolute position encoder connected with the PLC's input and (this encoder usually has an output value in the form of													
with the PLC's input and (this encoder usually has an output value in the form of														
				GR	AY C	;oae)	into	a Bir	i vait	le, w	nicn	is stored in the designated register.		
				The con	e val iside	lid ra red a	inge in err	of S or, a	is a nd th	as sh e cor	iown mma	below; if this range is exceeded, it will be and will not execute.		
				16-	bit c	omm	and:	0~32	,767					
				32-	bit c	omm	and:	0~2, ⁻	147,4	183,6	47			
Ex	amp	ple		Wh inp	nen) ut po	X20= pints	On, t X0 to	he G X17	RAY will	code be tra	e of ansfo	the absolute position encoder connected with prmed into BIN value and stored in D10.		
				X20 GBIN K4X0 D10										
											клч	0		
								X17				V X0		
				GR/	AY C	ODE	6513	300	01	010) 1 1	100101		
												1		
											Ĺ			
								b15			\rightarrow	b0		
					H19	71=K	6513	8 0 0	0 1	100) 1 0	0 1 1 1 0 0 0 1		

AF 215 21	ין ז∼ 7 נ) I	LD#				S1) (<u>S2</u>)		С	onta	ct form logical operation LD#
	Bit	dev	ice			V	Vord	devic	е			16-bit command (5 STEP)
	Х	Y	M	K	Н	KnX	KnY	KnM	Т	С	D	LD# Continuous – –
S1				*	*	*	*	*	*	*	*	execution type
S2				*	*	*	*	*	*	*	*	22 hit command (0 STED)
Not	es on	oper	and u	sage:	#:	& \ \	٨					DI D# Continuous – –
Plea	ase re	efer to	o the	functi	on sp	ecifica	tions	table fo	or ead	ch de	vice in	execution type
seri	es for	the r	ange	of dev	/ice u	sage						
												Flag signal: none

 S_1 : data source device 1. S_2 : data source device 2.

This command performs comparison of the content of S_1 and S_2 ; when the result of comparison is not 0, this command will be activated, but this command will not be activated when the result of comparison is 0.

The LD#This command can be used while directly connected with the busbar

API No.	16-bit commands	32-bit commands	С	ondit activ	ions f ation	or	Conditi	ions fo	or inact	ivation
215	LD&	DLD&	S ₁	&	S ₂	≠0	S ₁	&	S ₂	=0
216	LD	D LD	S ₁		S ₂	≠0	S ₁	Ι	S ₂	=0
217	LD^	DLD^	S ₁	۸	S ₂	≠0	S ₁	^	S ₂	=0

- &: logical AND operation.
- |: logical OR operation.
- ^: logical XOR operation.

Example

- When the content of C0 and C10 is subjected to the logical AND operation, and the result is not equal to 0, Y10=On.
- When the content of D200 and D300 is subjected to the logical OR operation, and the result is not equal to 0, and X1=On, Y11=On and remains in that state.

AF 218 22	ין ₀ 0 [ND#	ŧ —			S1) (<u>S2</u>)		С	ontac	t form logical operation AND#	
	Bit	dev	ice			V	Vord	devic	e			16-bit command (5 STEP)	
	Х	Y	M	K	Н	KnX	KnY	KnM	Т	С	D	AND# Continuous – –	-
S1				*	*	*	*	*	*	*	*	execution type	_!
S2				*	*	*	*	*	*	*	*	.32-bit command (0 STEP)	-;
Not Plea seri	es on ase re es foi	oper efer to the s	and u o the scope	sage: functi of de	‡ on sp vice u	‡ ∶ & ∖ ecifica sage	· ∖ ^ tions f	able f	or eac	h de	vice in	DAND# Continuous – – execution type	
												Flag signal: none	

 S_1 : data source device 1. S_2 : data source device 2.

- This command performs comparison of the content of **S**₁ and **S**₂; when the result of comparison is not 0, this command will be activated, but this command will not be activated when the result of comparison is 0.
- The AND# command is an operation command in series with the contact.

API No.	16-bit commands	32-bit commands	C	ondit activ	ions f ation	or	Conditi	ions fo	or inact	ivation
218	AND&	DAND&	S ₁	&	S ₂	≠0	S ₁	&	S ₂	=0
219	AND	D AND	S ₁		S ₂	≠0	S ₁		S ₂	=0
220	AND^	DAND^	S ₁	۸	S ₂	≠0	S ₁	۸	S ₂	=0

- &: logical AND operation.
- |: logical OR operation.
- ^: logical XOR operation.

Example

Explanation

- When X0=On and the content of C0 and C10 is subjected to the logical AND operation, and the result is not equal to 0, Y10=On.
- When X1=Off and D10 and D0 is subjected to the logical OR operation, and the result is not equal to 0, Y11=On and remains in that state.
- When X2 =On and the content of the 32-bit register D200 (D201) and 32-bit register D100 (D101) is subjected to the logical XOR operation, and the result is not equal to 0 or M3=On, M50=On.

AF 221 22	ν ₃ Γ	0	OR#				S1) (<u>S2</u>)		С	ontac	t form logical operation OR#
	Bit	dev	ice			V	Vord	devic	е			16-bit command (5 STEP)
	Х	Y	Μ	К	Н	KnX	KnY	KnM	Т	С	D	OR# Continuous – –
S1				*	*	*	*	*	*	*	*	execution type
S2				*	*	*	*	*	*	*	*	·22 hit command (0 STED)
Not Plea	es on ase re	oper efer t	and u o the	sage: functio	; on sp	‡∶&∖ ecifica	tions	table f	or ead	ch de	vice in	DOR# Continuous – – execution type
seri	es tor	r the s	scope	orde	vice u	sage						Flag signal: none

 S_1 : data source device 1. S_2 : data source device 2.

- This command performs comparison of the content of S_1 and S_2 ; when the result of comparison is not 0, this command will be activated, but this command will not be activated when the result of comparison is 0.
- The OR# command is an operation command in series with the contact.

API No.	16-bit commands	32-bit commands	С	ondit activ	ions for a tion	or	Conditi	ons fo	or inact	ivation
221	OR&	DOR&	S 1	&	S ₂	≠0	S ₁	&	S ₂	=0
222	OR	D OR	S ₁		S ₂	≠0	S ₁		S ₂	=0
223	OR^	DOR^	S ₁	۸	S ₂	≠0	S ₁	۸	S ₂	=0

- &: logical AND operation.
- |: logical OR operation.
- ^: logical XOR operation.

Example

- When X1=On or the content of C0 and C10 is subjected to the logical AND operation, and the result is not equal to 0, Y0=On.
- When X2 and M30 are both equal to On, or the content of 32-bit register D10 (D11) and 32-bit register D20 (D21) is subjected to the logical OR operation, and the result is not equal to 0, or the content of the 32-bit counter C235 and the 32-bit register D200 (D201) is subjected to the logical XOR operation, and the result is not equal to 0, M60=On.

AF 224 23	ין ר∼ 0	D	_D%				<u>51</u>) (<u>S2</u>		C	ontac	t form compare LD*	
	Bit	t dev	vice			V	Vord	devic	e			16-bit command (5 STEP)	:
	Х	Y	Μ	Κ	Н	KnX	KnY	KnM	Т	С	D	LD※ Continuous – –	ł
S1				*	*	*	*	*	*	*	*	execution type	_!
S2			<u> </u>	*	*	*	*	*	*	*	*	. <u>32-bit command</u> (9 STEP)	-:
NO	es on	1 opei	rand u	sage:	2	<pre></pre>	> < <	· <> ·	≦`∶	≧		DLD 💥 Continuous – – –	-0
Plea	ase r	eter t	o the	function	on sp	ecifica	tions	table f	or eac	ch dev	/ice in	execution type	Ē
seri	es to	r the	scope	of de	vice u	sage							
												Flag signal: none	

 S_1 : data source device 1. S_2 : data source device 2.

- This command compares the content of S₁ and S₂. Taking API 224 (LD=) as an example, this command will be activated when the result of comparison is "equal," and will not be activated when the result is "unequal."
- The LD* can be used while directly connected with the busbar

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
224	LD=	D LD=	$\mathbf{S_1}=~\mathbf{S_2}$	$S_1 \neq S_2$
225	LD>	D LD>	$S_1 > S_2$	$S_1 \leq S_2$
226	LD<	D LD<	$S_1 < S_2$	$\mathbf{S_1} \geq \mathbf{S_2}$
228	LD <>	DLD<>	$S_1 \neq S_2$	$\mathbf{S_1}=\ \mathbf{S_2}$
229	LD < =	\mathbf{D} LD $<=$	$S_1 \leq S_2$	$S_1 > S_2$
230	LD>=	DLD>=	$S_1 \ge S_2$	$S_1 < S_2$

Example

When the content of C10 is equal to K200, Y10=On.

When the content of D200 is greater than K-30, and X1=On, Y11=On and remains in that state.

AF 232 23	ין 2∼ 8 נ	A	ND>	× —			S1) (<u>S2</u>)		С	ontac	t form compare AND*
	Bit	dev	ice			V	Vord	devic		16-bit command (5 STEP)		
	Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D	AND※ Continuous – – –
S1	x x								*	*	execution type	
S2	S1 1 1 1 1 1 S2 * * * * * *							*	*	*	32 hit command (0 STED)	
Not	es on	oper	and u	sage:	×	<pre>% : = ∖</pre>	> 、 <	· <> ·	≦ ` }	≧		
Plea	lease refer to the function specifications table for each device eries for the scope of device usage										vice in	execution type
												Flag signal: none

S₁: data source device 1. **S**₂: data source device 2.

■ This command compares the content of **S**₁ and **S**₂. Taking API 232 (AND=) as an example, when the result of comparison is equal, this command will be activated; when the result of comparison is unequal, this command will not be activated.

The AND* command is a comparison command in series with a contact.

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
232	AND=	D AND=	$S_1 = S_2$	$S_1 \neq S_2$
233	AND>	DAND>	$S_1 > S_2$	$S_1 \leq S_2$
234	AND <	DAND<	$S_1 < S_2$	$S_1 \ge S_2$
236	AND<>	DAND<>	$S_1 \neq S_2$	$S_1 = S_2$
237	AND<=	DAND <=	$S_1 \leq S_2$	$S_1 > S_2$
238	AND>=	DAND>=	$S_1 \ge S_2$	$S_1 < S_2$

Example

When X0=On and the current value of C10 is also equal to K200, Y10=On.

When X1=Off and the content of register D0 is not equal to K-10, Y11=On and remains in that state.

When X2 =On and the content of the 32-bit register D0 (D11) is less than 678,493, or M3=On, M50=On.

AF 240 24	ר)∼ 6	D	DR※				S1) (<u>S2</u>		С	ontac	t form compare OR*	
	Bit	t dev	/ice			V	Vord	devic	e			<u>16-bit command</u> (5 STEP)	;
	Х	Y	M	K	Н	KnX	KnY	KnM	Т	С	D	OR Continuous – –	Ì
S1				*	*	*	*	*	*	*	*	execution type	Ĵ
S2				*	*	*	*	*	*	*	*	32 bit command (0 STED)	÷
Not	es or	1 ope	rand u	sage:	•	≪ : = ·	> <	· <> ·	≦ 、]	≥			ł
Ple	ase r	efer t	o the	functi	on sp	ecifica	tions	table f	or ead	ch de	vice in	execution type	-
seri	es to	r the	scope	orde	vice u	sage						Flag signal: none	

S₁: data source device 1. **S**₂: data source device 2.

- This command compares the content of **S**₁ and **S**₂. Taking API 240 (OR=) as an example, when the result of comparison is equal, this command will be activated; when the result of comparison is unequal, this command will not be activated.
- The OR* command is a compare command in parallel with a contact.

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
240	OR=	D OR=	$\mathbf{S_1}=\ \mathbf{S_2}$	$S_1 \neq S_2$
241	OR>	DOR>	$S_1 > S_2$	$S_1 \leq S_2$
242	OR<	DOR<	$S_1 < S_2$	$S_1 \ge S_2$
244	OR <>	DOR<>	$S_1 \neq S_2$	$S_1 = S_2$
245	OR < =	DOR < =	$S_1 \leq S_2$	$S_1 > S_2$
246	$OR\!>\!=$	DOR>=	$\mathbf{S_1} \geq \mathbf{S_2}$	$S_1 < S_2$

Example

When X0=On and the current value of C10 is also equal to K200, Y10=On. When X1=Off and the content of register D0 is not equal to K-10, Y11=On and remains in that state.

When X2 =On and the content of the 32-bit register D0 (D11) is less than 678,493, or M3=On, M50=On.

AF 275 28	> ;~ 0	F	'LD)	*	_	(S1)	(S2)		F	loatin	g point number contact form compare LD*
	Bit	t dev	ice			V	Vord	devic	е			16-bit command
	Х	Y	Μ	Κ	Н	KnX	KnY	KnM	Т	С	D	
S1									*	*	*	
S2									*	*	*	32-bit command (9 STEP)
Not Plea seri	Notes on operand usage: $\# : \& \ \ ^$ Please refer to the function specifications table for each device in series for the scope of device usage										FLD% Continuous – – execution type Flag signal: none	

 S_1 : data source device 1. S_2 : data source device 2.

- This command compares the content of S₁ and S₂. Taking "FLD=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."
- The FLD* command can directly input floating point numerical values (for instance: F1.2) to the S₁, S₂ operands, or store floating-point numbers in register D for use in operations.
- This command can be used while directly connected with the busbar

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
275	FLD=	$S_1 = S_2$	$S_1 \neq S_2$
276	FLD>	$S_1 > S_2$	$S_1 \leq S_2$
277	FLD<	$S_1 < S_2$	$S_1 \ge S_2$
278	FLD<>	$S_1 \neq S_2$	$S_1 = S_2$
279	FLD < =	$S_1 \leq S_2$	$S_1 > S_2$
280	FLD>=	$S_1 \ge S_2$	$S_1 < S_2$

Example

When the floating point number of register D200 (D201) is less than or equal to F1.2, and X1 activated, contact Y21 will be activated and remain in that state.

28 ⁻ 28	סן ו∼ 6	F	AND	*	_	(<u>S1</u>)	(S2)		FI	loatin	ng point number contact form compare AND*					
	Bit	dev	ice			V	Vord	devic	e			16-bit command					
	Х	Y	M	K	Н	KnX	KnY	KnM	Т	С	D						
S1									*	*	*						
S2									*	*	*	32-bit command (9 STEP)					
Not Ple seri	es on operand usage: $\#$: & $ \cdot \rangle$ ase refer to the function specifications table for each device in es for the scope of device usage									FAND Continuous — — — execution type Flag signal: none							

- S_1 : data source device 1. S_2 : data source device 2.
- This command compares the content of S₁ and S₂. Taking "FAND=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."
- The FAND* command can directly input floating point numerical values (for instance: F1.2) to the **S**₁, **S**₂ operands, or store floating-point numbers in register D for use in operations.
- This command can be used while directly connected with the busbar

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
281	FAND=	$\mathbf{S_1}=~\mathbf{S_2}$	$S_1 \neq S_2$
282	FAND>	$S_1 > S_2$	$S_1 \leq S_2$
283	FAND<	$S_1 < S_2$	$S_1 \ge S_2$
284	FAND<>	$S_1 \neq S_2$	$\mathbf{S_1}=~\mathbf{S_2}$
285	FAND<=	$S_1 \leq S_2$	$S_1 > S_2$
286	FAND>=	$S_1 \ge S_2$	$S_1 < S_2$

Example

Explanation

When X1=Off, and the floating point number in register D100 (D101) is not equal to F1.2, Y21=On and remains in that state.

AF 287 29	י~ 2	F	OR;	*		(S1)	(S2)		F	loatin	g point number contact form compare OR*
	Bit	dev	ice			V	Vord	devic	e			16-bit command
	Х	Y	Μ	Κ	Н	KnX	KnY	KnM	Т	С	D	
S1									*	*	*	
S2									*	*	*	<u>32-bit command</u> (9 STEP)
Not	es on	oper	and u	sage:	7	# ∶& ∖ 	` ^					execution type
seri	ase re es foi	eter to the s	c the cope	of dev	on sp /ice u	ecifica isage	tions	able to	or eac	n de	vice in	Flag signal: none

 S_1 : data source device 1. S_2 : data source device 2.

- This command compares the content of **S**₁ and **S**₂. Taking "FOR=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."
- The FOR* command can directly input floating point numerical values (for instance: F1.2) to the **S**₁, **S**₂ operands, or store floating-point numbers in register D for use in operations.
- This command can be used while directly connected with the busbar

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
287	FOR=	$\mathbf{S_1}=~\mathbf{S_2}$	$S_1 \neq S_2$
288	FOR>	$S_1 > S_2$	$S_1 \leq S_2$
289	FOR<	$S_1 < S_2$	$S_1 \ge S_2$
290	FOR<>	$S_1 \neq S_2$	$S_1 = S_2$
291	$FOR{<}=$	$S_1 \leq S_2$	$S_1 > S_2$
292	FOR>=	$S_1 \ge S_2$	$S_1 < S_2$

Example

Explanation

When X2 and M30 are both equal to "On," or the floating point number in register D100 (D101) is greater than or equal to F1.234, M60=On.

16-6-5 Detailed explanation of driver special applications commands

API 139)	-	RPR	Ρ			S1) (<u>S2</u>			Re	ad	serv	o parameter				
	Bit	dev	vice			V	Vord	devid	e				16	hit command (5 STEP)				
	X	Y	M	K	Н	KnX	KnY	KnM	Т	0	2	D	F	RPR Continuous RPRP Pulse				
S1				*	*							*	-	execution type execution type				
S2												*						
Notes	s on	oper	and us	sage:	none					1			<u>32-bit command</u>					
		-		-									:	<u> </u>				
													Fla	g signal: none				
Exp	Explanation S1: Parameter address of data to be read. (S2): Register where data to be read is stored.																	
AF 14	ין 0		N	/PR	Ρ		(5	61) (<u>S2</u>)			W	rite	servo parameter				
		Bit	devic	e			W	ord o	devic	е				16-bit command (5 STEP)				
	X	<u> </u>	Y	M	К	Н	KnX	KnY	KnM	T		С	D	WPR Continuous WPRP Pulse				
S1					*	*							*	execution type execution type				
S2					*	*							*					
Notes	s on	oper	and us	sage:	none									<u>32-bit command</u>				
														Flag signal: none				
E	Expl	anat	tion		(<u>S´</u> writ	¹⁾ : D tten.	ata to	o writ	e to s	spe	ecif	ied	pag	e. $(S2)$: Parameter address of data to be				
(_				Wh	en th	e da	ta in [·]	the C	P2	200	0 di	river	's parameter H01.00 is read and written to				
	Εx	amp	le		D0,	data	from	n H01	1.01 \	vill	be	rea	ad a	nd written to D1.				
					Wh	en N	Л0=C)n, th	ne co	ont	ent	of	D1	0 will be written to the CP2000 driver				
					par	amet	er 04	00 (first s	spe	ed	ofı	mult	iple speed levels).				
					Wh	en th	e pa	rame	ter ha	as	bee	en v	vritte	en successfully. M1017=On.				
					The	e CP2	2000	's WF	PR co	om	ma	nd	does	s not support writing to the 20XX address.				
					but	the F		comr	nand	SL	ipp	orts	rea	ding of 21XX, 22XX.				
							Hi							RPR H100 D0				
							nor	mally	open c	ont	acto	of						
							ope	ration	monit	orin	ıg (a)						
							M	C										
							H											
														END				
Reco	omi	men	datio	n Tak	ke ca	are w	/hen	usin	g the	e W	/PF	S C	omn	nand. When writing parameters, because				

ecommendation Take care when using the WPR command. When writing parameters, because most parameters are recorded as they are written, these parameters may only be revised 109 times; a memory write error may occur if parameters are written more than 10⁹ times.

Because the following commonly-used parameters have special processing, there are **no** restrictions on the number of times they may be written.

- P00-10: Control method
- P00-11: Speed mode selection
- P00-12: P2P position mode
- P00-13: Torque mode select
- P00-27: User-defined value

Chapter 16 PLC Function Applications | CP2000

- P01-12: Acceleration time 1
- P01-13: Deceleration time 1
- P01-14: Acceleration time 2
- P01-15: Deceleration time 2
- P01-16: Acceleration time 3
- P01-17: Deceleration time 3
- P01-18: Acceleration time 4
- P01-19: Deceleration time 4

P02-12: Select MI Conversion Time mode:

P02-18: Select MO Conversion Time mode:

P04-50 ~ P04-69: PLC register parameter 0 - 19

P08-04: Upper limit of integral

- P08-05: PID output upper limit
- P10-17: Electronic gear A

P10-18: Electronic gear B

- P11-34: Torque command
- P11-43: P2P highest frequency
- P11-44: Position control acceleration time
- P11-45: Position control deceleration time

Calculation of the number of times written is based on whether the written value is modified. For instance, writing the same value 100 times at the same time counts as writing only once.

When writing a PLC program, if unsure of usage of the WPR command, we recommend that you use the WPRP command.

AP	' 1	F	PID	D	S	1) (5	32) (S 3	(S4)	Di	river	PID coi	ntrol mode	Э		
14	•															
	Bit	dev	ice			V	Vord	devic	e			<u>16-bit c</u>	ommand (9 STEP)		
	Х	Y	М	K	H	KnX	KnY	KnM	Т	С	D	E FPID	Continu	JOUS : FPI		ulse :
S1				*	*						*		execution	птуре	execu	lion type
S2				*	*						*	<u>32-bit c</u>	ommand			:
53				*	*						*			: -	- :	- :
Note	no se	oner	and us	~	^ none						1		nali nana			
	5 011	oper		Juge.	none							Flag sig	nai. none			
Ex	plan	ation		S1 prop diffe The PID): P portic renti FP para	PID re onal al tim ID c amete	efere gain ne D. omm er 08	P. P. and -00 F	targe S3 can PID re	t va PID dire	lue fun ectly ence	input to ction i control target	erminal s ntegral tir I the driv value inpu	elect. <u>S</u> me I. <u>S</u> ver's feed it termina	²⁾ : PID ⁴⁾ : PID dback co l selectior	function function ntrol of n, 08-01
				prop	osal	gain	P, 0	8-02	integr	al tir	ne I,	and 08	3-03 differe	ential time	D.	
E	Exam	ple		Whe PID time 0.01 Whe PID PID Whe (targ prop PID D10	en M func e I is sec en M func en M get fi portic func 27: F	0=Or tion) 1 (ur .). 1=Or ction i l2=Or reque onal g tion c =requ	n, the , the nits: n, the), the n, the ency gain F differency iency	P, 08-02 integral time I, , the set PID reference the PID function propo nits: 0.01 sec.), and the , the set PID reference , the PID function pro- ntegral time I is 0, and the n, the set PID reference ncy input is controlled ain P is 1 (units: 0.01), lifferential time D is 0. ency command after PII					value inpu gain P is inction dif value inpu nal gain function d t value in he digital function	t terminal 0, the PIE ferential t P is 1 (ifferential put termin keypad), integral ti	selection function ime D is selection (units: 0.0 time D is nal select the PID me I is 0,	is 0 (no integral 1 (units: is 0 (no 01), the 0. ion is 1 function and the
				H					- F	PID		H0	H0	H1	H1	
					/11 				- F	PID		H0	H1	H0	H0]
					/12 				- F	PID		H1	H1	H0	H0]
				M1	1000 					ΛΟV		01027	D1			

END

REQ	Ρ	(S1)	(S2) (S	3)	Dr	river	speed co	ontrol mode
		١٨	lard	davia				16 hit oor	mmond (7 STED)
	<u>с Ц</u>	V) KnV	Vora (devic	;е Гт	C		FRFQ	Continuous EREOP Pulse
ivi r ×	\ п * *		NIIT	N I IIVI			*		execution type execution type
8	* *						*	32-bit cor	mmand
	* *						*		_ : _ : _ :
แมน นรสยุ	ye. none							Flag signa	al: M1015
S da Exam When The sa and th T da M e e M M M M M	2, S3: etermin ple 01-45= etting o ne S3 (c he FRI ecelera 11025: ffective 11026: (11040: (11042: 11044: I	In ac ed by 0: unit f 50 fo leceler EQ co tion tin Contro Contro Contro Contro Contro Contro Contro Contro Contro Contro Contro Contro	celera the d ts of (r S2 (ration mma ne; it of drive I drive I drive I drive (On)/ eque	ation/ efinition (accel time) nd cat also u ver RU er ope vo On k stop /relea ncy (0	decel ons o sec. leratic) settin an co uses s JN(O erating /Serv o (ON se pa Dn)/re	eratic f Pr0 ⁻ on tim ng of ntrol specia n)/ST g dire o Off.)/doe use (i elease	e) in 60 im drive al reg OP(C ction s not Off) e lock	the ladde pplies 0.6 r frequen ister cont Off) (RUN FWD(Off trigger qu	gs, the number of decimal places is r diagram below implies 0.5 sec, sec ncy commands, and acceleration and rol actions, such as: requires Servo On (M1040 On) to be)/REV(On) uick stop (Off).
Midi Wiaa Via Wiaa Viaa Viaa Viaa Viaa Viaa	11025: irection Vhen M accelera Vhen M accelera Vhen M M1000 M11 M11 M12 M12 M13 M14 M14 M100	E FWD M10=C tion/de 11=Or tion tir 11=Off	Driver (Off)/ Dn, seceler n, sets me of , the	REV(sets s the c 50 (0 driver	RUN On). I the driver $D_{0.5}$ set M_{1}	I(On)/ W101 driver of 0. frequ c.) an uency 025 026 040 044 044 044	(STO 5: free uency id dee com	P(Off), quency re comman celeration mand will	M1026: driver operating eached. command K300 (3.00Hz), with an id K3000 (30.00Hz), with an time of 60 (0.6 sec.). (When 01-45=0) now change to 0
	REQ Ce M M I ind is ind usa Image: Constraint of the second se	REQ P Ce M K H * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *	REQ S1 Ce M K H * * M1025: Contro M1025: Contro M1040: Contro M1041: Pause M1052: Lock fr M1025: C direction FWD When M11=Off M1000 H M11 H M1000 H M13 H M10 M11 M10	REQ S1 S2 Ce Word M K H KnX KnY * * * * * * * * * * * * and usage: none S1 Frequency co S2, S3: In acceler determined by the d Example When 01-45=0: units of 0 The setting of 50 for S2 0 and the S3 (deceleration When 01-45=0: units of 0 The setting of 50 for S2 0 and the S3 (deceleration The setting of 50 for S2 0 and the S3 (deceleration M1025: Control drive M1025: Control drive M1026: Control drive M1042: Trigger quic M1042: Trigger quic M1042: Trigger quic M1042: Trigger quic M1042: Trigger quic M1042: Trigger quic M1042: Trigger quic M1042: Driver M1052: Lock freque M1025: Driver direction FWD (Off)/ When M11=On, set acceleration time of M11 H M13 H M14 H M10 M11	REQ S1 S2 S ce Word device M K H KnX KnY KnM * * i i i i i * * i i i i i * * i i i i i * * i i i i i * * i i i i i i * * i	REQ P S1 S2 S3 ce Word device M K H KnX KnY KnM T * * i i i i i * * i i i i i i * * i	REQ S1 S2 S3 Dr ce Word device M K H KnX KnY KnM T C * * i <td< td=""><td>REQ P S1 S2 S3 Driver ce Word device M K H KnX KnY KnM T C D ** * i i * * * * ** * i i * * * * ** * i i *<!--</td--><td>REQ S1 S2 S3 Driver speed comparison M K H KnX KnY KnM T C D FREQ ** ** indication indication indication indication indication indication ** ** indication indicatio</td></td></td<>	REQ P S1 S2 S3 Driver ce Word device M K H KnX KnY KnM T C D ** * i i * * * * ** * i i * * * * ** * i i * </td <td>REQ S1 S2 S3 Driver speed comparison M K H KnX KnY KnM T C D FREQ ** ** indication indication indication indication indication indication ** ** indication indicatio</td>	REQ S1 S2 S3 Driver speed comparison M K H KnX KnY KnM T C D FREQ ** ** indication indication indication indication indication indication ** ** indication indicatio

- Parameter 09-33 are defined on the basis of whether reference commands have been cleared before PLC operation
 - Bit 0 : Prior to PLC scanning procedures, whether the target frequency has been cleared is 0. (This will be written to the FREQ command when the PLC is On)

- Bit 1 : Prior to PLC scanning procedures, whether the target torque has been cleared is 0. (This will be written to the TORQ command when the PLC is On)
- Bit 2 : Prior to PLC scanning procedures, whether speed limits in the torque mode have been cleared is 0. (This will be written to the TORQ command when the PLC is On)

Example: When using r to write a program,

FREQ	K2000	K1000	K1000
			END

if we force M0 to be 1, the frequency command will be 20.00 Hz; but when M0 is set as 0, there will be a different situation.

Case 1: When the 09-33 bit 0 is 0, and M0 is set as 0, the frequency command will remain at 20.00Hz.

Case 2: When the 09-33 bit 0 is 1, and M0 is set as 0, the frequency command will change to 0.00Hz

The reason for this is that when the 09-33 bit 0 is 1 prior to PLC scanning procedures, the frequency will first revert to 0.

When the 09-33 bit 0 is 0, the frequency will not revert to 0.

AF 26	ין 1	C	ANR	X P	(S	1)	<u>S2</u>) (<u>83</u>	D		ead (CANopen s	lave	e station o	data		
	Bit	dev	ice			V	Vord	devic	e			16-bit comm	nand	(9 STEP)		
<u>S1</u>	Х	Y	М	K *	H *	KnX	KnY	KnM	Т	С	D	CANRX	Cont xecut	inuous C tion type		Pulse execution	type
S2				*	*							32-bit comm	nand				
S3				*	*									- :	- :		
Note	es on	oper	and u	sage:	none				*	*	*	Flag signal					
E	(plan	ation		S1 D The Who read press M10): S): Pr cAl en it 066 a ding. set re 067 v	slave reset NRX is ex and N If the egiste will b	stati addro com cecuto /106 slav er, ar e se	on n ess. manc ed, it 7 will ve sta nd se t as	umbo d can will both tion g t M1 0, ar	er. send be gives 067 nd a	S2 the the 0 at the as 1 n err	Main index of SDO mess that time, s correct resp . If the sla or messag	ex the sage and pons ve s ge w	S3: s correspo e format M1066 v se, it will station ha	Subindex onding sl to the sl will be se write the as a resp corded t	+bit ler ave sta ave sta at as 1 value to conse e o D107	ngth. Ition. Ition. after o the error, '6 to
E	Exam	ple)	D10 M10 K4N Afte)79. 002: //400 erwai	Whe) = K [·] rds, e	en the 1 each t	e PL(C rur M106	ns, th 66 is	ne co 1, it v	mmand wi will switch t	ill be	e triggere different	ed once message	and wil	l set
				0			02							моу	K1 K	4M400	
				6		(instantaneously) M1066 Image: Marceleted State of Ward M1066 Marceleted T10 completed Image: Marceleted Marceleted Marceleted Marceleteed Marceleteed Marceletee								- TMR - ROLP	T10 K4M400	K5 K1	
				17	,	M40	0				Г		1/1	116044	114.0	D120	
				27	,	M40	1				[CANRXP	K1 K2	H6041	H10	D120	
				37	,	M40	2				CANTXP K1 D120 H6040				H10		
47 M403								—ſ	CANTXP	K2	D120	H6040	H10				
				57	,	м40 — Н	4							CA	NFLS speed c	D2025 liagram	
				61		м40 — Н	5							CA	sub-sta	tion 1 (F D2125	1)
				65											sub-sta	tion 1 (F	H)

AP 264	1 4		CA	ANT)	(P	S	1)	82) (S 3	(S4)	W	/rite (CANopen slave station data
	Ri	t d	ovi	<u></u>			١٨	lord	devic	<u>م</u>			16-bit command (9 STEP)
-	X	1 4		M	ĸ	н	KnX	KnV	KnM	Т	C		CANTX Continuous CANTXP Pulse
<u>S1</u>	~	-	•		*	*	NIX	MIT	TXI IIVI	1	0		execution type execution type
S2		\vdash	\rightarrow		*	*				*	*	*	
S2 S2					*	*				*	<u>т</u>	<u>т</u>	<u>32-bit command</u>
53		-			* *	* *							<u> </u>
Note	es or	n op	pera	nd usa	age: r	none							Flag signal
 S1: Slave station number. S2: Address to be written. S3: Main index S4: Subindex+bit length. The CANTX command can write a value to the index of the corresponding slav station. When it is executed, it will send the SDO message format to the slav station. M1066 and M1067 will both be 0 at that time, and M1066 will be set as after reading. If the slave station gives the correct response, it will write the valu to the preset register, and set M1067 as 1. If the slave station has a response error, M1067 will be set as 0, and an error message will be recorded to D1076 to D1079. 													
AP 26	1 5	_	CA	NFL	S P			D)		R	efres	h special D corresponding to CANopen
	Bi	t d	evi	ce			N	/ord (devic	e			16-bit command (3 STEP)
	Х	`	Y	М	K	Н	KnX	KnY	KnM	Т	С	D	CANFLS: Continuous CANFLSP: Pulse :
D					*	*							execution type execution type
Note	s or	n op	bera	nd usa	age: r	none							
													<u>32-bit command</u>
													Flag signal
Ex	plar	nat	on	•	D The attrib to th refre com the v the v Whe stational M10): Sp CAN oute, e sla sshed mano value en M1 on gi M10 67 w	ecial IFLS exect ve sta to t d wills of thi 066 a ves a 67 wi ill be	D to I comuting ation, his s send s spe and N corre II be set as	be ref mand this c and pecia a me cial E 41067 ect re set a s 0, a	freshe comm the n il D. ssage 0 will 7 are spon as 1. ind ar	ed. refr and umbo Whe e equ be w both se, t If the	esh s will s er of uivale vritten 0, an he va e slav or me	special D commands. When is a read only end a message equivalent to that of CANRX the slave station will be transmitted back and ere is a read/write attribute, executing this ent to that of CANTX to the slave station, and to the corresponding slave station. ad M1066 is set as 1 after reading, if the slave alue will be written to the designated register, ve station's response contains an error, then essage will be recorded to D1076-D1079.
320	ו כ	D		OMF	P	0	S1)(3	52)(<u>S3</u> (D	In	iterna	al communications read
	Bi	t d	evi	ce			V	/ord	devic	e			16-bit command (9 STEP)
	Х		Y	М	Κ	Н	KnX	KnY	KnM	Т	С	D	ICOMR Continuous ICOMRP Pulse
S1					*	*						*	execution type execution type
S2					*	*						*	32-bit command (17 STEP)
S3					*	*						*	DICOMR Continuous DICOMRP Pulse
D					*	*						*	execution type execution
Note	es or	n op	pera	nd us	age: r	none							Elag signal: M1077 M1078 M1079
				(01							(0)) =	
Ex	plar	nat	on		/: Se	electi	on of	slav	e dev	/ice.	<u>(32</u>	ノ: De	evice selection (0: converter, 1: internal
\subseteq				PLC	;). 🤇	<u>S3</u>):	Read	d add	ress.): s	avino	target.
					, The	ICO	MR c	comm	nand	can	obta	in the	e slave station's converter and the internal
					PLC	's re	gister	[·] valu	e.				

API 321 D		OMW	Ρ	G	S1)(S	32)(S3)	Interi	na	I com	munica	ation	s wr	ite			
Bit	devic				\//	ord de	vice				16-bit	comma	nd (9 STF	=P)			
X	Y	M	K	Н	KnX		nM T	()		1W : C	ontinu	ous	icom	WP:	Pulse	;
S1			*	*	1000				*	:	-	exe	cutior	i type		e	xecution	type
S2			*	*					*	:	22 hit		nd (1					
S3			*	*					*	:		MW C	ontinu				Puls	<u> </u>
D		.	*	*					*	:		in e	execut	ion			execut	ion
Notes on	operar	nd usa	ge: r	one							: 	÷	type				type	;
											Flag si	ignal: M	1077	M10	078 N	11079		
Explana	ation	S1 PLC] ■ i): Se). (The nter	ections ections signal P signal P	on of Read MW o LC's	slave addre comma registe	device ss. () and wi er.	ite	³²⁾ : E Savir a val)e ng ue	vice s targe e to th	electic .t. he sla	on (0: ve st	con tatio	vertei n's cc	r, 1: ii onvert	nternal ter and	the
Exam	ple	Plea	se r	efer to	o the	follow	ing exa	amp	le:									
				online	node	error ma	anning	inter	nal co	om	nmunic	cation						
			i	v1000	liouo,	errorm	apping											
		0	F	$\neg \vdash$								- MO	V C	01117	K2	M700]	
			1	normal	ly ope	n conta	ct							int	ternal n	ode h	as online	Э
			!	or oper	ation	monitor	ing (a)						V F)1116	Apping	M720	1	
														int	ternal n	node h	as error	
														ma	apping	atnod	e 0	
										_		- MO	V	K1	mmuni	<u>01110</u>	control	
														at	interna	Inode	control	
				•		<u> </u>				_					—(M	1035)	
			r	ead an	id writ	e data									enab	ole inte	rnal	trol
		17	Ľ		2								MO	/	K1	KAM0	1	itioi
			5	start ru	nning	forward							INIO	read	the sta	atus of	J Mlatno	de O
			(instan	taneo	usly)								reau	116 318	11113 01	wir at no	000
			L		И4 I L	6-5° 622												
			F	{epeat														
		24		M120	M5	0	MO						1/0	1/0			1	
		24	5			nd	MIat	t node	e 0			ICMR	K0	K0	H2600	D D0	J	
			F	Ready	rec	uest	M1				r	IOMP	1/0	1/0	11000		1	
							- I I AVI a	at noc	le O			ICMR	KU	KU	H2660	<u>J D1</u>	J	
							M2				ſ	ICMM	KO	KO	10640	0 05	1	
							Outp	ut sta	itus at r	nod	de0 l		NU	KU	H2040	J D5	J	
												ICMW	K0	K0	H26A	0 D6]	
			- h	M1002			AFM	1 at n	ode 0									
		70				6	1/:						MO	/	K0	D100]	
				start ru	Inning M10	TOFWAR	ozo	ntan	eousiy)					MI at	t node ()	
		76	H			10 W				_			ROL	P	K4M0	K1	1	
			4	85R&W	485	R&W 48	5R&W								Mlat	t node (5	
			C	omplete	ed erro	or ov	er time							IN	ICP	D100]	
		87	Ľ	M1077											IC	D30	1	
			4	85R&W	/									De	lay on r	eading	& writing	
			C	omplet	ed .	100-100-00 V							-	int	ernal co	mmuni	cation	
					Ч	D30	K1 H	tine						NON	K0	D30	8 maiting	
					interr	al comm	unicatio	n						inte	ernal co	mmuni	cation	
					interi	ar comm										M50)	
															Ser	nd requ	est	
		102	F												— <u>C</u>	END	J	
		19999																

16-7 Error display and handling

Code	ID	Descript	Recommended handling approach
PLrA	47	RTC time check	Turn power on and off when resetting the keypad time
PLrt	49	incorrect RTC mode	Turn power on and off after making sure that the keypad is securely connected
PLod	50	Data writing memory error	Check whether the program has an error and download the program again
PLSv	51	Data write memory error during program execution	Restart power and download the program again
PLdA	52	Program transmission error	Try uploading again; if the error persists, sent to the manufacturer for service
PLFn	53	Command error while downloading program	Check whether the program has an error and download the program again
PLor	54	Program exceeds memory capacity or no program	Restart power and download the program again
PLFF	55	Command error during program execution	Check whether the program has an error and download the program again
PLSn	56	Check code error	Check whether the program has an error and download the program again
PLEd	57	Program has no END stop command	Check whether the program has an error and download the program again
PLCr	58	MC command has been used continuously more than nine times	Check whether the program has an error and download the program again
PLdF	59	Download program error	Check whether the program has an error and download again
PLSF	60	PLC scan time excessively long	Check whether the program code has a writing error and download again

16-8 CANopen Master control applications

Control of a simple multi-axis application is required in certain situations. If the device supports the CANopen protocol, a CP2000 can serve as the master in implementing simple control (speed control). The setting method comprises the following seven steps:

Step 1: Activating CANopen Master functions

- 1. Parameter 09-45=1 (initiates Master functions); restart power after completing setting, the status bar on the KPC-CC01 digital keypad will display "CAN Master".
- 2. Parameter 00-02=6 reset PLC (please note that this action will reset the program and PLC registers to the default values)
- 3. Turn power off and on again.
- 4. Use the KPC-CC01 digital keypad to set the PLC control mode as "PLC Stop" (if the KPC-CE01 digital keypad is used, set as "PLC 2"; if a newly-introduced driver is used, the blank internal PLC program will cause a PLFF warning code to be issued).

Step 2: Master memory settings

- 1. After connecting the 485 communications cable, use WPL Soft to set the PLC **status** as Stop (if the PLC mode has been switched to the **"PLC Stop"** mode, the PLC **status** should already be Stop)
- 2. Set the address and corresponding station number of the slave station to be controlled. For instance, if it is wished to control two slave stations (a maximum of 8 stations can be controlled simultaneously), and the station numbers are 21 and 22, it is only necessary to set D2000 and D2100 as 20 and 21, and then set D2200, D2300, D2400, D2500, D2600, and D2700 as 0. The setting method involves use of the PLC's WPL editing software WPL as follows:
 - Open WPL and implement communications > register edit (T C D) function

😂 Dvp0 -	Delta WP	LSoft - [Vie	w Register]	_							- 🗆 🗙
Eile	<u>E</u> dit Com	giler Co <u>m</u> r	nents <u>S</u> earch	View C	ommunication	<u>Options</u>	W <u>i</u> zard <u>W</u> i	indow <u>H</u> elp			_ 8 ×
				9 1 1	299	0	5 0 1	÷ (2.3		
	隆 🕑 👔	1 28 🖽	1 8 P			0 . 9			좀 큰 뭐	🖾 🔍 🛈	
D Registe Data Typ (* 16 bits C 32 bits	e C Reș e C s (c s (c	gister C Display Mod Decimal Hexadecii Binary Float	Register(32b le mal	its) T Re Transı Clear A	egister nit	Hint					
	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	-
D0	0	0	0	0	0	0	0	0	0	0	
D10	0	0	0	0	0	0	0	0	0	0	
D20	0	0	0	0	0	0	0	0	0	0	
D30	0	0	0	0	0	0	0	0	0	0	
D40	0	0	0	0	0	0	0	0	0	0	
D50	0	0	0	0	0	0	0	0	0	0	
D60	0	0	0	0	0	0	0	0	0	0	
D70	0	0	0	0	0	0	0	0	0	0	
D80	0	0	0	0	0	0	0	0	0	0	
D90	0	0	0	0	0	0	0	0	0	0	
D100	0	0	0	0	0	0	0	0	0	0	_
D110	0	0	0	0	0	0	0	0	0	0	
D120	0	0	0	0	0	0	0	0	0	0	_
D130	0	0	0	0	0	0	0	0	0	0	
D140	0	0	0	0	0	0	0	0	0	0	
D150	0	0	0	0	0	0	0	0	0	0	
D160	0	0	0	0	0	0	0	0	0	0	-
	0	verwrite		_		0/1	0000 Steps				

After leaving the PLC register window, the register setting screen will appear, as shown below:

If there is a new PLC program and no settings have yet been made, you can read default data from the converter, and merely edit it to suit the current application. If settings have already been made, however, the special D in the CANopen area will display the saved status (the CANopen D area is located at D1090 to D1099 and D2000 to D2799). Assuming it is a new program, we will first read the default data from the converter; check the communications format if there is no communications link (the default PLC station number is 2, 9600, 7N2, ASCII). Perform the following steps: 1. Switch the PLC to Stop status; 2. Press the transmit button; 3. click on read memory after exiting the window; 4. Ignore D0-D399; and 5. click on the confirm button.)

Chapter 16 PLC Function Applications | CP2000

Dvp0	- Delta WF	PLSoft - [Vie	w Register)						-	• ×
Si Eile	Edit Con	ngiler Com	ments <u>S</u> earc	h <u>View</u> C	ommunical	ion Options Wizard	Window Help			- 6
		00)	00	9 3 0		01 7 80	1 🗘 🗢	2. 4		
E I	● 🔮 🛙	1 28 🖽		0 50 0	医师!	2009995	高業課業	린리		- n
D Regist Data Typ 16 bi 32 bi	ter C Re pe I ts 6	egister C Display Moo Occimal Hexadeci Binary Float	Register(32) de mal	bits) T R 2 Trans Clear	egister mit	Hint				
	+0	+1	+2	+3	+4	+5 +6	+7	+8	+9	
D0	0	0	0	0	0	0 0	0	0	0	_
D10	0	0	0	0	0	Transmission Setup		18	-	×
020	0	0	0	0	0	3		-	5	
030	0	0	0	0	0	• Read from PLC	OK			
040	0	0	0	0	0	C Write to PLC De	evice Register	_	Cancel	
050	0	0	0	0	0	-Pault Assa Satur				
D60	0	0	0	0	0	Bank Area Setup	Start	0	End 300	
D 70	0	0	0	0	0	A Dank 0	Juit	, lo	Line 577	
080	0	0	0	0	0		Range:D0~I	0399		
090	0	0	0	0	0				-	_
0100	0	0	0	0	0	Bank 1	Start	1000	End 1099	
0110	0	0	0	0	0		Range:D1000	~ D1099	65	
0120	0	0	0	0	0			MACTERIOS &		_
0130	0	0	0	0	0	F Bank 2	Start	2000	End 2799	
D140	0	0	0	0	0		Panas Dano	D2700	8	
D150	0	0	0	0	0		Kange:D2000	~ D2199	0.	
	-			12						

After reading the data, it is necessary to perform some special D settings. Before proceeding, we will first introduce the special D implications and setting range. The CANopen Master's special D range is currently D1070 to D1099 and D2000 to D2799; this range is divided into 3 blocks:

The first block is used to display CANopen's current status, and has a range of D1070 to D1089; the second block is used for CANopen's basic settings, and has a range of D1090 to D1099; the third block is the slave station mapping and control area, and has a range of D2000 to D2799; These areas are therefore introduced as follows:

The first contains the current CANopen status display:

When the master initializes a slave station, we can find out from D1070 whether configuration of the slave device has been completed; we can find out whether an error occurred in the configuration process from D1071 and whether the configuration is inappropriate from D1074.

After entering normal control, we can find out whether the slave device is offline from D1073. In addition, we can check the slave device's read/write information using the CANRX, CANTX, and CANFLS commands; error information can be obtained from D1076 to D1079 if there has been a read/write failure.

Special D	Description of Function	R/W
D1070	Channel opened by CANopen initialization (bit0=Machine code0)	R
D1071	Error channel occurring in CANopen initialization process (bit0=Machine code0)	R
D1072	Reserved	-
D1073	CANopen break channel (bit0=Machine code0)	R

Special D	Description of Function	R/W				
D1074	Error code of master error					
	0: No error	Б				
01074	1: Slave station setting error					
	2: Synchronizing cycle setting error (too small)					
D1075	Reserved	-				
D1076	SDO error message (main index value)	R				
D1077	SDO error message (secondary index value)	R				
D1078	SDO error message (error code L)	R				
D1079	SDO error message (error code H)	R				

The second area is for basic CANopen settings: (the PLC must have **Stopped** when this area is used to make settings)

We must set the information exchange time for the master and slave station,

Special D	Description of Function	Default:	R/W
D1090	Synchronizing cycle setting	4	RW

Use D1090 to perform settings; setting time relationships include:

For instance, when communications speed is 500Kbps, TXPDO + RXPDO have 8 sets, and synchronizing time will require more than 4 ms

We must also define how many slave stations will be open. D1091 is the channel for defining station opening, and D2000+100*n is the station number defining this channel. See the detailed explanation below.

Slave station number n=0-7

Chapter 16 PLC Function Applications | CP2000

If slave devices have a slow start-up, the master can delay for a short time before performing slave station configuration; this time delay can be set via D1092.

Special D	Description of Function	Default:	R/W
D1092	Delay before start of initialization	0	RW

With regard to slave device initialization, a delay time can be set to judge whether failure has occurred. If the communications speed is relatively slow, the delay time can be adjusted to judge whether initialization has been completed, which will ensure that there is time to perform slave device initialization.

Special D	Description of Function	Default:	R/W
D1099	Initialization completion delay time Setting range: 1 to 60000 sec	15 sec.	RW

After communication is successful, the system must detect whether there is a break in communications with the slave station. D1093 is used to set detection time, and D1094 sets the number of consecutive errors that will trigger a break error.

Special D	Description of Function	Default:	R/W
D1093	Break time detection	1000ms	RW
D1094	Break number detection	3	RW

The packet type transmitted by PDO is set before establishing normal communications and generally does not require adjustment.

Special D	Description of Function	Default:	R/W
D1097	Corresponding real-time transmission type (PDO) Setting range: 1~240	1	RW
D1098	Corresponding real-time receiving type (PDO) Setting range: 1~240	1	RW

The third block is the slave station mapping and control area.

CANopen provides a PDO method to perform mapping of the master and slave station memory, and enables the master to directly access read/write data in a certain memory area. The master will automatically perform data exchange with the corresponding slave device, and the read/write values can be seen directly from the special D area after real-time exchange (M1034 = 1 time) has been established. The CP2000 currently supports real-time mapping of four PDOs, and there are two types of PDO RXPDO (reads slave device information) and TXPDO (writes to slave device). In addition, in order to facilitate control, the CP2000 cannot perform mapping of commonly used registers; the following is an overview of the current PDO mapping situation:

	TX PDO									
PDO4	(Torque)	PDO3	(Position)	PDO2 (R	emote I/O)	PDO1 (Speed)				
Description	Special D	Description	Special D	Description	Special D	Description	Special D			
Controller word	D2008+100*n	Controller word	D2008+100*n	Slave device DO	D2027+100*n	Controller word	D2008+100*n			
Target torque	D2017+100*n	Target position	D2020+100*n D2021+100*n	Slave device AO1	D2031+100*n	Target speed	D2012+100*n			
Control mode	D2010+100*n	Control mode	D2010+100*n	Slave device AO2	D2032+100*n					
				Slave device AO3	D2033+100*n					

	RXPDO												
PDO4	(Torque)	PDO3	(Position)	PDO2 (Re	(Speed)								
Description	Special D	Description Special D		Description	Special D	Description	Special D						
Mode word	D2009+100*n	Mode word	D2009+100*n	Slave device DI	D2026+100*n	Mode word	D2009+100*n						
Actual torque	D2018+100*n	Actual position	D2022+100*n D2023+100*n	Slave device Al1	D2028+100*n	Actual frequency	D2013+100*n						
Actual mode	D2011+100*n	Actual mode	D2011+100*n	Slave device Al2	D2029+100*n								
				Slave device Al3	D2030+100*n								

Because usage requires only simple to open the corresponding PDO, where TXPDO employs D2034+100*n settings and RXPDO employs D2067+100*n settings.

These two special D areas are defined as follows:

		PDO4	PDO3			PDO2	PDO1		
Default definition	Torque		Position			Remote I/O	Speed		
bit	15 14 ~ 12		11	10 ~ 8	7	6 ~ 4	3	2 ~ 0	
Definition	efinition En Length:		En	Length:	En	Length:	En	Length:	

En: indicates whether PDO is used

Length: indicates mapping of several variables

In a simple example, if we wish to control a CP2000 slave device and cause it to operate in speed mode, we only have to make the following settings:

D2034+100*n =000Ah

	TX PDO								
Length	PD	PDO4 PDO3		PDO3		PDO	D2	PE	001
	Description	Special D	Description	Special D	Ì	Description	Special D	Description	Special D
1	Controller word	D2008+100*n	Controller word	D2008+100*n		Slave device	D2027+100*n	Controller word	D2008+100*n
2	Target torque	D2017+100*n	Target position	D2020+100*n D2021+100*n		Slave device	D2031+100*n	Target speed	D2012+100*n
3	Control mode	D2010+100*n	Control mode	D2010+100*n		Slave device	D2032+100*n		
4						Slave device	D2033+100*n		

	P	DO4		PDO3		PDO2	PDO1		
Definition	To	orque	P	osition	Re	mote I/O	Speed		
bit	15	14 ~ 12	11	10 ~ 8	7	6~4	3	2~0	
Definition	0	0	0	0	0	0	1	2	

D2067+100*n =000Ah

	TX PDO											
Length	PDC	D4	PE	PDO3		PE	PDO2		PDO1			
	Description	Special D	Description	Special D		Description	Special D		Description	Special D		
1	Controller word	D2009+100*n	Controller word	D2009+100*n		Slave device Dl	D2026+100*n		Controller word	D2009+100*n		
2	Actual torque	D2018+100*n	Actual position	D2022+100*n D2023+100*n		Slave device Al1	D2028+100*n		Actual frequency	D2013+100*n		
3	Actual mode	D2011+100*n	Actual mode	D2011+100*n		Slave device Al2	D2029+100*n					
4						Slave device Al3	D2030+100*n					

	PDO4		PDO3		I	PDO2	PDO1		
Definition	Torque		Position		Re	mote I/O	Speed		
bit	15	14 ~ 12	11	10 ~ 8	7	6~4	3	2~0	
Definition	0	0	0	0	0	0	1	2	
Switch the PLC to Run after completing settings. Now wait for successful initialization of CANopen (M1059 = 1 and M1061 = 0), and then initiate CANopen memory mapping (M1034 = 1). The control word and frequency command will now automatically refresh to the corresponding slave device (D2008+n*100 and D2012+n*100), and the slave device's status word and currently frequency will also be automatically sent back to the master station (D2009+n*100 and D2013+n*100). This also illustrates how the master can handle these tasks through read/write operations in the special D area.

Furthermore, it should be noted that the remote I/O of PDO2 can obtain the slave device's current DI and AI status, and can also control the slave device's DO and AO status. Nevertheless, after introducing a fully automatic mapping special D, the CP2000 CANopen master also provides additional information refreshes. For instance, while in speed mode, acceleration/deceleration settings may have been refreshed. The special D therefore also stores some seldom-used real-time information, and these commands can be refreshed using the CANFLS command. The following is the CP2000's current CANopen master data conversion area, which has a range of D2001+100*n - D2033+100*n, as shown below:

1. The range of n is 0-7

2. ●Indicates PDOTX, ▲Indicates PDORX; unmarked special D can be refreshed using the CANFLS command

Special D	Description of Eurotion	Dofault		D/\//			
Special D	Description of Function	Delault	1	2	3	4	Γ./ ٧ ν
D2000+100*n	Station number n of slave station Setting range: 0~127 0: No CANopen function	0					RW
D2002+100*n	Manufacturer code of slave station number n (L)	0					R
D2003+100*n	Manufacturer code of slave station number n (H)	0					R
D2004+100*n	Manufacturer's product code of slave station number n (L)	0					R
D2005+100*n	Manufacturer's product code of slave station number n (H)	0					R

Basic definitions

Special D	Description of Eulection	Dofault		D/M			
Special D	Description of Function	Delault	1	2	3	4	
D2006+100*n	Communications break handling	0					RW
	method of slave station number n						
D2007+100*p	Error code of slave station number	0					P
D2007+100 II	n error	0					
D0000 . 400*	Control word of slave station	0	-		_	_	
D2008+100 m	number n	0	•		•	•	RVV
D2000 1 100*p	Status word of slave station	0	•				Б
D2009+100 II	number n	0					R
D2010+100*m	Control mode of slave station	2					
D2010+100°h	number n	2					RVV
D0044 - 400*-	Actual mode of slave station						
D2011+100^n	number n	2					R

Velocity Control

Special D	acial D Description of Eurotion Def		PDO Default					
Special D	Description of Function	Delault	1	2	3	4	FK/ V V	
D2001+100*n	Torque restriction on slave station number n	0					RW	
D2012+100*n	Target speed of slave station number n (rpm)	0	•				RW	
D2013+100*n	Actual speed of slave station number n (rpm)	0					R	
D2014+100*n	Error speed of slave station number n (rpm)	0					R	
D2015+100*n	Acceleration time of slave station number n (ms)	1000					RW	
D2016+100*n	Deceleration time of slave station number n (ms)	1000					RW	

Torque control

Special D	Description of Eurotion	Dofault	PDO Default					
Special D	Description of Function	Delault	1	2	3	4		
D2017+100*n	Target torque of slave station number n (-100.0%~+100.0%)	0				•	RW	
D2018+100*n	Actual torque of slave station number n (XX.X%)	0					R	
D2019+100*n	Actual current of slave station number n(XX.XA)	0					R	

Position control

Special D	Description of Eurotian	Dofault	PDO Default				P/\/
Special D	Description of Function	Delault	1	2	3	4	
D2020+100*n	Target of slave station number n (L)	0					RW
D2021+100*n	Target of slave station number n (H)	0			•		RW
D2022+100*n	Actual position of slave station number n (L)	0					R
D2023+100*n	Actual position of slave station number n (H)	0					R
D2024+100*n	Speed chart of slave station number n (L)	10000					RW
D2025+100*n	Speed chart of slave station number n (H)	0					RW

Remote I/O

Special D	Description of Eurotion	Dofault	PDO Default				
Special D	Description of Function	Delault	1	2	3	4	r./ v v
D2026+100*n	MI status of slave station number n	0					R
D2027+100*n	MO setting of slave station number n	0		•			RW
D2028+100*n	Al1 status of slave station number n	0					R
D2029+100*n	Al2 status of slave station number n	0					R
D2030+100*n	Al3 status of slave station number n	0					R
D2031+100*n	AO1 setting of slave station number n	0		•			RW
D2032+100*n	AO2 setting of slave station number n	0		•			RW
D2033+100*n	AO3 setting of slave station number n	0		•			RW

After gaining an understanding of special D definitions, we return to setting steps. After entering the values corresponding to D1090 to D1099, D2000+100*n, D2034+100*n and D2067+100*n, we cannot begin to perform downloading, which is performed in accordance with the following steps: (1. D2000 and D2100 are set as 20 and 21, and D2200, D2300, D2400, D2500, D2600, and D2700 are set as 0; if a setting of 0 causes problems, D1091 can be set as 3, and slave stations 2 to 7 can be closed. 2. Switch PLC to Stop status. 3. Press the transmit button. 4. Click on write memory after exiting the window. 5. Ignore D0~D399. 6. Change the second range to D1090~D1099. 7. Click on Confirm.)

Another method can be used to set D1091: Determine which of slave stations 0 to 7 will not be needed, and set the corresponding bits to 0. For instance, if it is not necessary to control slave stations 2, 6 and 7, merely set D1091 = 003B, and the setting method is the same as described above: Use WPL to initiate communications > use register edit (T C D) function to perform settings.

Step 3: Set the master's communications station number and communications speed

- ☑ When setting the master's station number (parameter 09-46, default is set as 100), make sure not to use the same number as a slave station.
- Set the CANopen communications speed (parameter 09-37); regardless of whether the driver is defined as a master or slave station, the communications speed is set via this parameter.

Step 4: Write program code

Real-time access: Can directly read/write to or from the corresponding D area.

Non real-time access:

- Read command: Use the CANRX command for reading. M1066 will be 1 when reading is complete; M1067 will be 1 if reading is successful, and M1067 will be 0 if an error has occurred.
- Write command: Use the CANTX command for writing. M1066 will be 1 when writing is complete; M1067 will be 1 if writing is successful, and M1067 will be 0 if an error has occurred.
- **Refresh command:** Use CANFLS command to refresh (if there are RW attributes, the master will write to the slave station; if there are RO attributes, the slave station will return the read values to the master); M1066 will be 1 if refresh has been completed; M1067 will be 1 if refresh is successful, and M1067 will be 0 if an error has occurred.

When using CANRX, CANTX or CANFLS, internal implementation commands will wait until M1066 is completed before executing the next CANRX, CANTX or CANFLS.

Afterwards, download program to the driver (Please note that the PLC's default communications format is ASCII 7N2 9600, and the station number is 2. The WPL must therefore be modified, and the WPL setting pathway is **settings > communications settings**)

Step 5: Set the slave stations' station numbers, communications speed, control source, and command source

Delta's CP2000 and EC series devices currently support the CANopen communications interface driver, and the corresponding slave station numbers and communications speed parameters are as follows:

	Corresponding device parameters		Value	Definition		
	CP2000	E-C				
Slave station	00.36	00.20	0	Disable CANopen hardware interface		
address	09-30	09-20	1~127	CANopen Communication address		
			0	1M		
			1	500K		
Communication	09-37	09-21	2	250K		
speed			3	125K		
			4	100K		
			5	50K		
Control course	00-21	-	3			
Control source	-	02-01	5			
Fragueney course	00-20	-	6			
Frequency source	-	02-00	5			
	11-33	-	3			
Torque source	-	-	-			
Position source	11-40	-	3			
FUSICION SOURCE	-	-	-			

Delta's A2 Servo currently supports the CANopen communications interface, and the corresponding slave station numbers and communications speed parameters are as follows:

	Corresponding device parameters A2	Value	Definition
Slave station address	03-00	1~127	CANopen Communication address
		R= 0	125K
Communication	03-01 bit 8-11 XRXX	R= 1	250K
communication		R= 2	500K
speed		R= 3	750K
		R= 4	1M
Control/command source	01-01	В	

Step 6: Connect hardware wiring

When performing wiring, note the head and tail terminal resistance; connection methods are as follows:

Step 7: Initiate control

After a program has been written and downloaded, switch the PLC mode to Run. Merely turn power to master and slave stations off and then on again.

Refer to CANMasterTest 1 vs. 2 driver.dvp

Example :

CP2000 driver one-to-two control

Step 1: Activating CANopen Master functions

- Parameter 09-45=1 (initiates Master functions); restart power after completing setting, the status bar on the KPC-CC01 digital keypad will display "CAN Master".
- Parameter 00-02=6 reset PLC (please note that this action will reset the program and PLC registers to the default values)
- \square Turn power off and on again.
- Use the KPC-CC01 digital keypad to set the PLC control mode as "PLC Stop" (if the KPC-CE01 digital keypad is used, set as "PLC 2"; if a newly-introduced driver is used, the blank internal PLC program will cause a PLFF warning code to be issued).

Step 2: Master memory correspondences

- ☑ Enable WPL
- ☑ Use keypad set PLC mode as Stop (PLC 2)
- WPL read D1070 to D1099, D2000 to D2799
- ☑ Set D2000=10 D2100=11
- ☑ Set D2100 2200 2300 2400 2500 2600 2700=0
- ☑ Download D2000 to D2799 settings

Step 3: Set the master's communications station number and communications speed

- ☑ When setting the master's station number (parameter 09-46, default is set as 100), make sure not to use the same number as a slave station.
- Set the CANopen communications speed as 1M (parameter 09-37=0); regardless of whether the driver is defined as a master or slave station, the communications speed is set via this parameter.

Step 4: Write program code

Real-time access: Can directly read/write to or from the corresponding D area.

- Non real-time access:
 - **Read command**: Use the CANRX command for reading. M1066 will be 1 when reading is complete; M1067 will be 1 if reading is successful, and M1067 will be 0 if an error has occurred.
 - Write command: Use the CANTX command for writing. M1066 will be 1 when writing is complete; M1067 will be 1 if writing is successful, and M1067 will be 0 if an error has occurred.
 - **Refresh command:** Use CANFLS command to refresh (if there are RW attributes, the master will write to the slave station; if there are RO attributes, the slave station will return the read values to the master); M1066 will be 1 if refresh has been completed; M1067 will be 1 if refresh is successful, and M1067 will be 0 if an error has occurred.

When using CANRX, CANTX or CANFLS, internal implementation commands will wait until M1066 is completed before executing the next CANRX, CANTX or CANFLS.

Afterwards, download program to the driver (Please note that the PLC's default communications format is ASCII 7N2 9600, and the station number is 2. The WPL must therefore be modified, and the WPL setting pathway is **settings > communications settings**)

Step 5: Set the slave stations' station numbers and communications speed

Slave station no. 1: 09-37 = 0(Speed 1M)09-36=10(Node ID 10)Slave station no. 2: 09-37 = 0(Speed 1M)09-36=10(Node ID 11)

Step 6: Connect hardware wiring

When performing wiring, note the head and tail terminal resistance; connection methods are as follows:

Step 7: Initiate control

After a program has been written and downloaded, switch the PLC mode to Run. Merely turn power to master and slave stations off and then on again.

Refer to CANMasterTest 1 vs. 2 driver.dvp

16-9 Explanation of various PLC speed mode controls

Speed mode supports SVC control. Under the speed mode of SVC control, it cannot be

performed successfully unless finish motor parameter auto tuning ahead of time.

Control methods and settings are explained as follows:

Speed control:

Register table for speed mode:

Control special M

Special	Description of Function	Attributes
M		
M1025	Driver frequency = set frequency (ON)/driver frequency =0 (OFF)	RW
M1026	Driver operating direction FWD(OFF)/REV(ON)	RW
M1040	Hardware power (Servo On)	RW
M1042	Quick stop	RW
M1044	Pause (Halt)	RW
M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW

Status special M

Special	Description of Function	Attributes
M		
M1015	Frequency attained (when used together with M1025)	RO
M1056	Servo On Ready	RO
M1058	On Quick Stopping	RO

Control special D

Special D	Description of Function	Attributes
D1060	Mode setting (speed mode is 0)	RW

Status special D

Special	Description of Function	Attributes
D		
D1037	Converter output frequency (0.00~600.00)	RO
D1050	Actual operating mode (speed mode is 0)	RO

Speed mode control commands:

S3

Target speed The first acceleration time setting The first deceleration time setting

Example of speed mode control:

Before performing speed control, if the SVC control method is used, setting of electromechanical parameters must first be completed.

- 1. Setting D1060 = 0 will shift the converter to the speed mode (default).
- 2. Use the FREQ command to control frequency, acceleration time, and deceleration time.
- 3. Set M1040 = 1, the driver will now be excited, but the frequency will be 0.

- 4. Set M1025 = 1, the driver frequency command will now jump to the frequency designated by FREQ, and acceleration/deceleration will be controlled on the basis of the acceleration time and deceleration time specified by FREQ.
- 5. M1052 can be used to lock the current operating frequency.
- 6. M1044 can be used to temporarily pause operation, and the deceleration method will comply with deceleration settings.
- 7. M1042 can be used to perform quick stop, and deceleration will be as quick as possible without giving rise to an error. (There may still be a jump error if the load is too large.)
- 8. Control user rights: M1040(Servo ON) > M1042(Quick Stop) > M1044(Halt) > M1052(LOCK)

16-10 Internal communications main node control

The protocol has been developed in order to facilitate the use of 485 instead of CANopen in certain application situations. The 485 protocol offers similar real-time characteristics as CANopen; this protocol can only be used on the CP2000 and CT2000 devices. The maximum number of slave devices is 8.

Internal communications have a master-slave structure. The initiation method is very simple:

Slave device:

Set parameter 09-31 = -1 to -8 in order to access 8 nodes, and set parameter 00-20 = 1 to define the control source as 485 and access the reference sources that must be controlled, namely speed command (00-21 = 2), torque command (11-33 = 1), and position command (11-40=2). This will complete slave device settings. (PLC functions do not need to be activated)

System

Setting the master is even simpler; it is only necessary to set parameter 09-31 = -10, and enable the PLC.

Hardware wiring:

The master and slave stations are connected via the 485 serial port. The CP2000 provide two types of 485 serial port interfaces, see the figure below: (please refer to 06 Control terminals concerning detailed terminal connections)

Chapter 16 PLC Function Applications | CP2000

Master programming: In a program, D1110 can be used to define a slave station to be controlled (1~8, if set as 0, can jump between 8 stations). Afterwards, M1035 is set as 1, and the memory positions of the master and slave stations will correspond. At this time, it is only necessary to send commands to the correlation slave station address to control that station. The following is a register table connected with internal communications:

Control special M

Special M	Description of Function	Attributes
M1035	Initiates internal communications control	RW

Control special D

Special D	Description of Function	Attributes
D1110	Internal node communications number 1~8 (set the station number of the slave station to be controlled)	RW

			De	scription of F	unction			
Special D	Definition	bit	User rights	Speed mode	Location mode	Torque mode	Homing mode	Attributes
		0	4	Command functions	-	-	Homing Origin	
		1	4	Reverse rotation requirements	Immediate change	-	-	
		2	4	-	-	-	-	
		3	3	Temporary pause	Temporary pause	-	-	
	Internal node N. control	4	4	Frequency locking	-	-	Temporary pause	
D1120 + 10*N	command	5	4	JOG	-	-	-	RW
		6	2	Quick Stop	Quick Stop	Quick Stop	Quick Stop	
		7	1	Servo ON	Servo ON	Servo ON	Servo ON	
		11~8	4	Speed interval switching	Speed interval switching	-	-	
		13~12	4	Deceleration time change	-	-	-	
		14	4	Enable Bit 13 ~ 8	Enable Bit 13 ~ 8	-	-	
		15	4	Clear error code	Clear error code	Clear error code	Clear error code	
D1121 + 10*N	Internal node N control mode			0	1	2	3	RW
D1122 + 10*N	Internal node N reference command L			Speed command (no number)	Position command (with numbers)	Torque command (with numbers)	-	RW
D1123 + 10*N	Internal node N reference command H			-		Speed limit	-	RW

₩ N = 0 ~ 7

Status special D

Special D	Description of Function	Attributes
D1115	Internal node synchronizing cycle (ms)	RO
D1116	Internal node error (bit0 = slave device 1, bit1 = slave device 2,bit7 = slave device 8)	RO
D1117	Internal node online correspondence (bit0 = slave device 1, bit1 = slave device 2,bit7 = slave device 8)	RO

Special D	Description of Function										
Special D	bit	Speed mode	Location mode	Torque mode	Homing mode	Allibules					
	Δ	Frequency command	Position command	Torque command	Zero command						
	0	arrival	attained	attained	completed						
	1	Clockwise	Clockwise	Clockwise	Clockwise						
	I	Counterclockwise:	Counterclockwise:	Counterclockwise:	Counterclockwise:						
D1126 + 10*N	2	Warning	Warning	Warning	Warning	RO					
	3	Error	Error	Error	Error						
	5	JOG									
	6	Quick Stop	Quick Stop	Quick Stop	Quick Stop						
	7	Servo ON	Servo ON	Servo ON	Servo ON						
D1127 + 10*N		Actual frequency	Actual position	Actual torque							
		Actual frequency	Actual position	(with numbers)	-	RO					
D1128 + 10*N		-	(with humbers)	-	-						

※ N = 0 ~ 7

Example: Assume it is desired to control slave station 1 operation at frequencies of 30.00Hz and 60.00 Hz, status, and online node correspondences:

When it is judged that slave station 1 is online, delay 3 sec. and begin control

It is required slave station 1 maintain forward rotation at 30.00Hz for 1 sec., and maintain reverse rotation at 60.00 Hz for 1 sec., and repeat this cycle continuously.

16-11 Modbus remote IO control applications (use MODRW)

The CP2000's internal PLC supports 485 read/write functions, which can be realized using the MODRW command. However, the 485 serial port must be defined as available for the PLC's 485 use before writing a program, and the parameter 09-31 must be set as -12. After completing settings, the standard functions defined by 485 can be used to implement read/write commands at other stations. Communications speed is defined by parameter 09-01, the communications format is defined by parameter 09-04, and the PLC's current station number is defined by parameter 09-35. The CP2000 currently supports the functions read coil (0x01), read input (0x02), read register (0x03), write to single register (0x06), write to several coils (0x0F), and write to several registers (0x10). Explanations and the usage of these functions are provided as follows:

	MODR	W comr	nand				
S1	S2	S3	S4	S5	General	Slave device is Delta's PLC	Slave device is Delta's
Node ID	Command	Address	Return: D area	Length:	meaning	meaning	converter meaning
К3	H01	H500	D0	K18	Read coil (Bit)	Read 18 bits of data corresponding to slave station 3 PLC Y0 to Y21. This data is stored by bit 0 to 15 of this station's D0 and bit 0 to bit 3 of D1.	Does not support this function
K3	H02	H400	D10	K10	Read input (Bit)	Read 10 bits of data corresponding to slave station 3 PLC X0 to X11. This data is stored by bit 0 to 9 of this station's D10.	Does not support this function
КЗ	H03	H600	D20	К3	Read register (word)	Read 3 words of data corresponding to slave station 3 PLC T0 to T2. This data is stored by D20 to D22.	Read 3 words of data corresponding to slave station 3 converter parameters 06-00 to 06-02. This data is stored by D20 to D22
К3	H06	H610	D30	XX	Write to single register (word)	Write slave station 3 PLC's T16 to this station's D30 value	Write slave station 3 converter 06 to 16 parameter to this station's D30 value
К3	H0F	H509	D40	K10	Write to multiple coils (Bit)	Write slave station 3 PLC's Y11 to Y22 to bit 0 to 9 of D40.	Does not support this function
К3	H10	H602	D50	K4	Write to multiple registers (word)	Write slave station 3 PLC's T2 to T5 to D50 to D53	Write slave station 3 converter 06-02 to 06-05 parameters to this station's D50 to D53

※ XX indicates doesn't matter

After implementing MODRW, the status will be displayed in M1077 (485 read/write complete), M1078 (485 read/write error), and M1079 (485 read/write time out). M1077 is defined so as to immediately revert to 0 after the MODRW command has been implemented. However, any of three situations—a report of no error, a data error report, or time out with no report—will cause the status of M1077 to change to On.

Example program: Testing of various functions

At the start, will cause the transmitted time sequence to switch to the first data unit.

0 M1002 MOV К1 K4M0 ┥┝ On only for 1 scan a

When the reported message indicates no error, it will switch to the next transmitted command

6	M1077 M1078 M1079			
	┝┥┝──┥┝──┥┝	ROLP	K4M0	K1
	485 R/W 485 R/W 485 R/W			
	rite is co rite is fail rite is time 0			

If time out occurs or an error is reported, the M1077 will change to On. At this time, after a delay of 30 scanning cycles, it will re-issue the original command once

It will repeat after sending all commands

Practical applications:

Actual use to control the RTU-485 module.

Step 1: Set the communications format. Assume that the communications format is 115200, 8,N,2, RTU

CP2000 : The default PLC station number is set as 2 (09-35)

09-31=-12(COM1 is controlled by the PLC), 09-01=115.2(The communications speed is 115200) 09-04=13(The format is 8,N,2, RTU)

The	stat	ion	num	nber	= 8	(giv	/e e	kam	nple)			Cna	ipter '	16 PL	C Fur	iction	Ар
ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0		PA3	PA2	PA1	PA0	DR2	DR1	DR0	A/R	
0	0	0	0	1	0	0	0		1	0	0	0	1	1	1	0	
					E) 1										
	0 0 0	POV RUN ALA	VER N RM		R	0 S-485											
	RU		aiz NO		1 2 3 4 5 5 7 8	ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0		(I	Comr D0~	nuni ID7 á	catic are d	on st lefine	ation ed as	#: 2°, 2	2 ¹ , 2 ² .	2 ⁶ , 2	7
	ST	TO P						0	Comr	nuni	catio	on pro	otoco	I			
									PA3	PA2	PA	1 P.	AO A	A/R C	Commun	ication *	Prot
			2		-00	PA3		L	OFF	OFF	OF	FO	FF	ON	7,E	,1 · ASC	41
	L	0	6		1	PA2			OFF	OFF	OF	F	N	ON	7,0	0,1 · ASC	:11
	0	0				PA1		H	OFF	OFF	ON	0	FF	ON	7,5	2 · ASC	11
	-	t			W 2	PA0		÷	OFF	ON	OF		FF	ON	7,0	12 . 450	11
		í				DR2			OFF	ON	OF	FC	DN .	ON	8.6	1 · ASC	
		\supset				DR1			OFF	ON	ON	0	FF	ON	8,0	0,1 · ASC	11
	I F	_	1	5 🛏					OFF	ON	ON	0	0N	ON	8,8	I,1 · ASC	11
		r				AR			ON	OFF	OF	F O	FF	ON	8,8	1,2 · ASC	31
	1 -							L	OFF	ON	OF	FC	ON C	DFF	8,	E,1 · RTU	J
			1		<u> </u>			-	OFF	ON	ON	0	FF (DFF	8,	0,1 · RTI	J
			ā		• -				OFF	ON	ON			DFF	8,	N,1 · RTU	<u> </u>
			. Ii	<u></u>	=1				ON	OFF	OF	- 0	FF (JFF	8,	N,2 · RIU	<u> </u>
			_i		' ·				DR2		DR	1	DRO)	Comm	unicaton	Sp
			σli	4.					OFF		OF	F	OFF		1	,200 bps	8
			S	л_	<u> </u>				OFF		OF	F	ON		2	,400 bps	6
									OFF		ON		OFF	-	4	,800 bps	8
									OFF		ON		ON		9	,600 bps	6
									ON		OF	-	OFF	-	1	9,200 bps	1
						П			ON		OF		OF		3	7 600 bps	F
					F		1		ON	-	ON		ON		11	5.200 bo	s
					L -		,		ON		UN	-	UN			o'rean nh	~

RTU

Step 2: Install control equipment. We sequentially connect a DVP16-SP (8 IN 8 OUT), DVP-04AD (4 channels AD), DVP02DA (2 channels DA), and DVP-08ST (8 switches) to the RTU485.

The following corresponding locations can be obtained from the RTU485's configuration definitions:

Module	Terminals	485 Address
	X0 ~ X7	0400H ~ 0407H
DVF 10-3F	Y0 ~ Y7	0500H ~ 0507H
DVP-04AD	AD0 ~ AD3	1600H ~ 1603H
DVP02DA	DA0 ~ DA1	1640H ~ 1641H
DVP-08ST	Switch 0 ~ 7	0408H ~ 040FH

Step 3: Physical configuration

Step 4: Write to PLC program

				MOV	K1	K4M0
ON only fo r 1 scan a M3						X Input re ad
Multi-word write						
M1002 M0	MODRVV K	(8	H2	H400	D0	K16
ON only fo X input re r 1 scan a ad		80	240000		07623)	20000
	MODRVV K	< 8	HF	H500	D100	K8
Delay cycl Multi-Y ou e t write					5036-010 S	20074
M2	MODRVV K	(8	НЗ	H1606	D200	K4
Word read					AD 1 Val	Je
M1077 M1078 M1079				ROLP	K4M0	К1
485 read/w 485 read/w 485 read/w rite is co rite fail rite timeo				293	X Input re ad	
M1077 						D30
485 read/w rite is co					13	Delay cyc e times
Ц> D30 К10 ↓				MOV	KO	D30
Delay cycl e times						Delay cycl e times

Chapter 16 PLC Function Applications | CP2000

Step 5: Actual testing situation:

I/O testing: When the switch is activated, it can be discovered that the display corresponds to M115 -M108. Furthermore, it can be seen that one output point light is added every 1 sec. (the display uses a binary format)

AD DA testing: It can be discovered that D200 and D201 are roughly twice of the D300, and continue to increase progressively. For their part, the D202 and D203 are roughly twice of the D301, and continue to decrease progressively.

16-12 Calendar functions

Keypad (KPC-CC01) should be connected, or the CP2000 cannot be used. Currently-support commands include TCMP (comparison of calendar data), TZCP (calendar data range comparison), TADD (calendar data addition), TSUB (calendar data subtraction), and TRD (calendar reading). Please refer to the explanation of relevant commands and functions for the usage of these commands.

In real applications, the internal PLC can judge whether calendar function have been activated; if they have been activated, calendar warning codes may be displayed in some situations. The basis for whether a calendar function has been activated is whether the program has written the calendar time (D1063 to D1069) in connection with the foregoing calendar commands or programs.

Special D	Item	Content	Attributes
D1063	Year (Western)	20xx (2000~2099)	RO
D1064	Weeks	1~7	RO
D1065	Month	1~12	RO
D1066	Day	1~31	RO
D1067	Hour	0~23	RO
D1068	Minute	0~59	RO
D1069	Second	0~59	RO

The calendar's time display is currently assigned to D1063 to D1069, and is defined as follows:

Calendar-related special M items are defined as follows:

Special D	Item	Attributes
M1068	Calendar time error	RO
M1076	Calendar time error or refresh time out	RO
M1036	Ignore calendar warning	RW

*When a program writes to the commands TCMP, TZCP, TADD, or TSUB, if it is discovered that a value exceeds the reasonable range, M1026 will be 1.

*When the keypad display is PLra (RTC correction warning) or PLrt (RTC time out warning), M1076 will be ON.

*When M1036 is 1, the PLC will ignore the calendar warning.

Calendar trigger warning code is defined as follows:

Warning	Description	Reset approach	Whether it affects PLC operation
PLra	Calendar time correction	Requires power restart	Will not have any effect
PLrt	Calendar time refresh time out	Requires power restart	Will not have any effect

*When the PLC's calendar functions are operating, if the keypad is replaced with another keypad, it will jump to PLra.

*When it is discovered at startup that the keypad has not been powered for more than 7 days, or the time is wrong, PLra will be triggered.

*When it is discovered that the CP2000 has no keypad in 10 sec. after startup, PLrt will be triggered.

*If the keypad is suddenly pulled out while the calendar is operating normally, and is not reconnected in 1 minute, PLrt will be triggered.

Practical applications:

We will perform a demo of simple applications.

We first correct the keypad time. After pressing Menu on the keypad, select the 9th time setting option. After selection, set the current time.

We set converter on during the period of 8:00-17:20, which allows us to write the following example

[This page intentionally left blank]

Chapter 17 Introduction to BACnet

1. About BACnet:

BACnet is an ASHRAE communication protocol for **b**uilding **a**utomation and **c**ontrol **net**works. (ASHRAE: **A**merican **S**ociety of **H**eating, **R**efrigerating and Air-Conditioning **E**ngineers, Inc.). CP2000's BACnet is based on version 2004.

BACnet's regulations are related to several kinds of physical layers' interfaces. The physical layer built inside CP2000 is achieved via MS/TP interface.

The BACnet of CP2000 supports a device type called B-ASC. B-ASC supports six types of services such as DS-RP-B, DS-RPM-B, DS-WP-B, DM-DDB-B, DM-DOB-B and DM-DCC-B.

2. CP2000 BACnet-Object and Property:

In CP2000, BACnet supports 3 object types: Device, AnalogValue (AV) and BinaryValue (BV). In each object type, we have the following table to show the Properties list:

Bronovity ID		Object Type			
	Property ID	Device	Analog Value	Binary Value	
#4	ACTIVE TEXT			V	
#11	APDU_TIMEOUT	V			
#12	APPLICATION_SOFTWARE_VERSION	V			
#28	DESCRIPTION	V	V	V	
#30	DEVICE ADDRESS BINDING	V	V		
#36	EVENT STATE		V	V	
#44	FIRMWARE_REVISION	V			
#46	INACTIVE TEXT			V	
#62	MAX_APDU_LENGTH_ACCEPTED	V			
#63	MAX_INFO_FRAMES	V			
#64	MAX_MASTER	V			
#70	MODEL_NAME	V			
#73	NUMBER_OF_APDU_RETRIES	V			
#75	OBJECT_IDENTIFIER	V *1	V	V	
#76	OBJECT_LIST	V			
#77	OBJECT_NAME	V *1	V	V	
#79	OBJECT_TYPE	V	V	V	
#81	OUT OF SERVICE		V	V	
#85	PRESENT VALUE		V *2	V *2	
#87	PRIORITY ARRAY		V *3	V *3	
#96	PROTOCOL_OBJECT_TYPES_SUPPORTED	V			

	Bronorty ID	Object Type			
	Property D	Device	Analog Value	Binary Value	
#97	PROTOCOL_SERVICES_SUPPORTED	V			
#98	PROTOCOL_VERSION	V			
#104	RELINQUISH DEFAULT		V *3	V *3	
#107	SEGMENTATION_SUPPORTED	V			
#111	STATUS FLAGS		V	V	
#112	SYSTEM_STATUS	V			
#117	UNITS		V		
#120	VENDOR_IDENTIFIER	V			
#121	VENDOR_NAME	V			
#139	PROTOCOL_REVISION	V			
#155	DATABASE_REVISION	V			

*1. The Object_ID and Object_Name Properties of Device are writeable.

*2. The Present_Value Property of some AV and BV objects is commandable.

*3. Only Commandable objects support Priority_Array and Relinquish_Default.

The AV objects, we have commandable and readonly cases.

- Commendable case: We can use Write_Service to access the Present_Value property of commandable AV objects. Thus, the commandable AV objects are linking to the Control_Word and Pr_Word in CP2000.
- Readonly case: We can use Read_Service to access the Present_Value property of readonly AV objects. Thus, these readonly AV objects are linking to the Status_Word in CP2000.

The BV objects, we also have commandable and readonly cases.

- Commandable case: We can use Write_Service to access the Present_Value property of commendable BV objects. Thus, the commandable BV objects are linking to the Control_Bit in CP2000.
- Readonly case: We can use Read_Service to access the Present_Value property of readonly BV objects.
 Thus, these readonly BV objects are linking to the Status_Bit in CP2000.

2.1 Commandable Analog Value Object

In CP2000, we have AV_000~AV_026 supporting commandable Present_Value property. For these AV_Objects, we also can use (Multi) Read_Service to access Priority_Array and Relinquish_Default properties.

Object Number	R/W	Object Name	Object Description	Unit
AV 000	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 001	RW	FreqRefValue	Frequency Reference Value	UNITS_HERTZ
AV 002	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 003	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 004	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 005	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 006	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 007	RW	Reserved	Reserved	UNITS_NO_UNITS

Object Number	R/W	Object Name	Object Description	Unit
AV 008	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 009	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 010	RW	Reserved	Reserved	UNITS_NO_UNITS
AV 011	RW	(P9-11 map set)	AV11 will modify data which is P9-11 mapping to	Depends
AV 012	RW	(P9-12 map set)	AV12 will modify data which is P9-12 mapping to	Depends
AV 013	RW	(P9-13 map set)	AV13 will modify data which is P9-13 mapping to	Depends
AV 014	RW	(P9-14 map set)	AV14 will modify data which is P9-14 mapping to	Depends
AV 015	RW	(P9-15 map set)	AV15 will modify data which is P9-15 mapping to	Depends
AV 016	RW	(P9-16 map set)	AV16 will modify data which is P9-16 mapping to	Depends
AV 017	RW	(P9-17 map set)	AV17 will modify data which is P9-17 mapping to	Depends
AV 018	RW	(P9-18 map set)	AV18 will modify data which is P9-18 mapping to	Depends
AV 019	RW	(P9-19 map set)	AV19 will modify data which is P9-19 mapping to	Depends
AV 020	RW	(P9-20 map set)	AV20 will modify data which is P9-20 mapping to	Depends
AV 021	RW	(P9-21 map set)	AV21 will modify data which is P9-21 mapping to	Depends
AV 022	RW	(P9-22 map set)	AV22 will modify data which is P9-22 mapping to	Depends
AV 023	RW	(P9-23 map set)	AV23 will modify data which is P9-23 mapping to	Depends
AV 024	RW	(P9-24 map set)	AV24 will modify data which is P9-24 mapping to	Depends
AV 025	RW	(P9-25 map set)	AV25 will modify data which is P9-25 mapping to	Depends
AV 026	RW	(P9-26 map set)	AV26 will modify data which is P9-26 mapping to	Depends

2.2 Status (Readonly) Analog Value Object

In CP2000, we have AV_027~AV_068 with readonly Present_Value property. For these AV_Objects, we do NOT have Priority_Array and Relinquish_Default properties.

Object Number	R/W	Object Name	Object Description	Unit
	P	Reserved	Pesenved	
AV 021			Reserved	
AV 028	R	Reserved	Reserved	UNITS_NO_UNITS
AV 029	R	Reserved	Reserved	UNITS_NO_UNITS
AV 030	R	Reserved	Reserved	UNITS_NO_UNITS
AV 031	R	Output frequency	Display output frequency(Hz)	UNITS_HERTZ
AV 032	R	Reserved	Reserved	UNITS_NO_UNITS
AV 033	R	Reserved	Reserved	UNITS_NO_UNITS
AV 034	R	Reserved	Reserved	UNITS_NO_UNITS
AV 035	R	Output torque (%)	Display output torque (%)	UNITS_PERCENT
AV 036	R	Reserved	Reserved	UNITS_NO_UNITS
AV 037	R	Reserved	Reserved	UNITS_NO_UNITS
AV 038	R	Reserved	Reserved	UNITS_NO_UNITS
AV 039	R	Status word	Display status word,made from BV16~BV31	UNITS_NO_UNITS
AV 040	R	Reserved	Reserved	UNITS_NO_UNITS

Chapter 17 Introduction to BACnet | CP2000

Object Number	R/W	Object Name	Object Description	Unit
AV 041	R	Driver type code	Driver type code	UNITS_NO_UNITS
AV 042	R	Warn code	Warn code	UNITS_NO_UNITS
AV 043	R	Error code	Error code	UNITS_NO_UNITS
AV 044	R	Output current	Display output current(Amp)	UNITS_AMPERES
AV 045	R	DC-bus voltage	Display DC-BUS voltage(Volt)	UNITS_VOLTS
AV 046	R	Output Voltage	Display output voltage of U, V, W(Volt)	UNITS_VOLTS
AV 047	R	Count Value	Display counter value of TRG terminal	UNITS_NO_UNITS
AV 048	R	Power Angle	Display output power angle of U, V, W	UNITS_POWER_FA CTOR
AV 049	R	Output Power	Display actual output power of U, V, W(kw)	UNITS_KILOWATTS
AV 050	R	IGBT temperature	Display the IGBT temperature	UNITS_DEGREES_ CELSIUS
AV 051	R	Temperature of driver	Display the temperature of capacitance	UNITS_DEGREES_ CELSIUS
AV 052	R	Real carry frequency	Display real carrier frequency of the drive(KHz)	UNITS_KILOHERTZ
AV 053	R	PID feedback value	Display PID feedback value (%)	UNITS_PERCENT
AV 054	R	Overload rate	Display overload condition (%)	UNITS_PERCENT
AV 055	R	Ground fail detect level	Display GND fail detect level (%)	UNITS_PERCENT
AV 056	R	DC bus ripple	Display DCbus voltage ripples(Volt)	UNITS_VOLTS
AV 057	R	Fan Speed	Fan speed of the drive (%)	UNITS_PERCENT
AV 058	R	Output speed(rpm)	Output speed(rpm)	UNITS_REVOLUTIO NS_PER_MINUTE
AV 059	R	KW per Hour	KW per Hour	UNITS_KILOWATTS
AV 060	R	Multi-speed switch	Real multi-speed switch	UNITS_NO_UNITS
AV 061	R	AVI1 input value	0~10V corresponds to 0~100%	UNITS_PERCENT
AV 062	R	ACI input value	4~20mA/0~10V corresponds to 0~100%	UNITS_PERCENT
AV 063	R	AVI2 input value	0V~10V corresponds to 0~100%	UNITS_PERCENT
AV 064	R	Digital input status	Refer to P2-12	UNITS_NO_UNITS
AV 065	R	Digital output status	Refer to P2-18	UNITS_NO_UNITS
AV 066	R	CPU pin status of DI	Corresponding CPU pin status of digital input	UNITS_NO_UNITS
AV 067	R	CPU pin status of DO	Corresponding CPU pin status of digital output	UNITS_NO_UNITS
AV 068	R	PLC D1043 value	PLC D1043 value	UNITS_NO_UNITS

2.3 Commandable Binary Value Object

In CP2000, we have BV_000~BV_015 supporting commandable Present_Value property. For these BV_Objects, we also can use (Multi) Read_Service to access Priority_Array and Relinquish_Default properties.

Object Number	R/W	Object Name	Object Description
BV 000	RW	ACTIVE CMD	(0)FreqCmd=0;(1)FreqCmd=FreqRefValue
BV 001	RW	FWD/REV CMD	(0)Forward; (1)Reverse
BV 002	RW	Reserved	Reserved
BV 003	RW	HALT CMD	(0)None;(1)RampDown to 0Hz.
BV 004	RW	LOCK CMD	(0)None;(1)OutputFreq stays at current frequency
BV 005	RW	Reserved	Reserved
BV 006	RW	QSTOP CMD	(0)None;(1)Force driver quick stop
BV 007	RW	ServoPower CMD	(0)PowerOff(free run to stop);(1)PowerOn
BV 008	RW	Reserved	Reserved
BV 009	RW	Reserved	Reserved
BV 010	RW	Reserved	Reserved
BV 011	RW	Reserved	Reserved
BV 012	RW	Reserved	Reserved
BV 013	RW	Reserved	Reserved
BV 014	RW	Reserved	Reserved
BV 015	RW	RESET	RESET:(0)Do nothing;(1)Reset fault

2.4 Status (Readonly) Binary Value Object

In CP2000, we have BV_016~BV_031 with readonly Present_Value property. For these BV_Objects, we do NOT have Priority_Array and Relinquish_Default properties.

Object Number	R/W	Object Name	Object Description
BV 016	R	ARRIVE STATE	(0)Not yet;(1)Arrive (OutputFreq=FreqCmd)
BV 017	R	FWD/REV STATE	(0)Forward;(1)Reverse
BV 018	R	WARN STATE	(0)No Warn;(1)Occur Warn
BV 019	R	ERROR STATE	(0)No Error;(1)Occur Error
BV 020	R	Reserved	Reserved
BV 021	R	Reserved	Reserved
BV 022	R	QSTOP STATE	(0)No QSTOP;(1)Occur QSTOP
BV 023	R	ServoPower STATE	(0)PowerOff(free run to stop);(1)PowerOn
BV 024	R	Reserved	Reserved
BV 025	R	Reserved	Reserved
BV 026	R	Reserved	Reserved
BV 027	R	Reserved	Reserved

Chapter 17 Introduction to BACnet | CP2000

Object Number	R/W	Object Name	Object Description
BV 028	R	Reserved	Reserved
BV 029	R	Reserved	Reserved
BV 030	R	Reserved	Reserved
BV 031	R	Reserved	Reserved

3. Steps to setup the Pr about BACnet in CP2000

Related to BACnet function in CP2000, We have to configure 2 parts of Pr.

Part1. Setup parameters related to Communication at Pr_Group9.

Part2. Setup parameters related to System_Parameter at Pr_Group0.

Part1. Pr_Group9, Communication.

- 1-1. Set Pr09-31 =1, BACnet is enabled, then the COM1_Port will be accessed by BACnet. When this is set, the COM1_Port communication format will be changed to RTU 8, N, 1.
 (Note: The HW Pins of COM1_Port are shared by RJ45 and RS485. When BACnet is enabled, BACnet will access the COM1_Port, that also means we can **NOT** have Modbus, PLC connections, VFDSoft and VFD Explorer by COM1_Port).
- 1-2. Set Pr09-50, Default = 10, BACnet's MS/TP station number 0~127
- 1-3. Set Pr09-51, Default = 38400, BACnet communication baud rate, 9600, 19200, 38400 or 76800bps.
- 1-4. Set Pr09-52 and Pr09-53, The default setting of Device Object_Identifier is 0x000A (Pr09-52=10, Pr09-53=00). Device Object_Identifier is the combination of Pr09-52 and Pr09-53, thus the setting range can be 0~4194303.

For example, Pr09-53=12(0x0C) and Pr09-52 =3456(0x0D80), then the device Identifier's value =12*65536+3456 =789888(0x0C0D80).

- 1-5. Set Pr09-55, Default =127, the highest allowable address for master nodes on the same MS/TP network. CP2000 base on this setting to know the Max search range.
- 1-6. Set Pr09-56, setup the BACnet password. If setup is successful, the keypad will display 8888.

Part2. Pr_Group0, System Parameter.

- 2-1. Set Pr00-20 =1, That means the source of the Frequency command is from RS485 Interface (accessed by BACnet).
- 2-2. Set Pr00-21 =2, That means the source of the Operation command is from RS485 Interface (accessed by BACnet).

Here is a simple example:

After setting up the 2 parts of Pr, we can enable the BACnet function in CP2000. Thus, we can access some BACnet objects to make the CP2000 driving motor Run or Stop.

Step1. Write_Service on AV_001, Present_Value =60.0 → Setup Frequency Reference Value.

Step2. Write_Service on BV_007, Present_Value =Active. → Setup Servo Power CMD.

Step3. Write_Service on BV_000, Present_Value =Active. → Setup Active CMD.

Step4. Read_Service on AV_031, Present_Value \rightarrow User can know the Output frequency.

PS. In CP2000, base on different Pr setting or IO setting, we can make FreqCmd with different source of Reference Value. Please check the usage of Keypad, Pr and IO setting for more detail information.

Chapter 17 Introduction to BACnet | CP2000

Connection of the communication cable as shown in the below diagram.
 Please note that HW Pins of COM1_Port are shared by RJ45 and RS485. That means user can use RJ45_cable or RS485_lines to access the COM1_Port.
 When BACnet is enabled, COM1_Port will be dominated by BACnet function. Under this condition,

user will not be able to have MODBUS VFD Soft, VFD Explorer or PLC function on COM1_Port.

BACnet Protocol Implementation Conformance Statement

Date : July 24, 2014 Vendor Name: Delta Electronics, Inc. Product Name: CP2000 Product Model Number: VFD-CP2000 Applications Software Version: Ver 01.04- yyyymm Firmware Revision: Ver 01.04 BACnet Protocol Revision: 7

Product Description:

Delta VFD-CP2000 is a Variable Frequency AC motor Drive with BACnet embedded.

In VFD-CP2000, the BACnet connection is by MS/TP, RS485-based. VFD-CP2000 provides a BACnet communication function that permits it as a server and supports BIBBs defined by the BACnet B-ASC. VFD-CP2000 BACnet provides the capability to control and monitor the VFD-CP2000 machine.

BACnet Standardized Device Profile (Annex L):

- □ BACnet Operator Workstation (B-OWS)_
- □ BACnet Building Controller (B-BC)
- □ BACnet Advanced Application Controller (B-AAC)_
- BACnet Application Specific Controller (B-ASC)
- □ BACnet Smart Sensor (B-SS)
- □ BACnet Smart Actuator (B-SA)

List all BACnet Interoperability Building Blocks Supported (Annex K):

Data Sharing BIBBs

Data Sharing-ReadProperty-B (DS-RP-B) Data Sharing-WriteProperty-B (DS-WP-B) Data Sharing-ReadPropertyMultiple-B (DS-RPM-B)

Device and Network Management BIBBs

Device Management-Dynamic Device Binding-B (DM-DDB-B) Device Management-Dynamic Object Binding-B (DM-DOB-B) Device Management-DeviceCommunicationControl-B (DM-DCC-B)

Segmentation Capability:

□ Segmented requests supported Window Size ______

Standard Object Types Supported:

Analog Value Binary Value Device

Object instantiation is static. Refer to table at end of this document for object details.

Chapter 17 Introduction to BACnet | CP2000

Device Address Binding:

Is static device binding supported? (This is currently necessary for two-way communication with MS/TP slaves and certain other devices.) □Yes ■No

Networking Options:

□ Router, Clause 6 - List all routing configurations, e.g., ARCNET-Ethernet, Ethernet-MS/TP, etc.

□ Annex H, BACnet Tunneling Router over IP

BACnet/IP Broadcast Management Device (BBMD)

Does the BBMD support registrations by Foreign Devices?

Yes

No

Character Sets Supported:

Indicating support for multiple character sets does not imply that they can all be supported simultaneously.

■ ANSI X3.4	□ IBM [™] /Microsoft [™] DBCS	□ ISO 8859-1
□ ISO 10646 (UCS-2)	□ ISO 10646 (UCS-4)	□ JIS C 6226

If this product is a communication gateway, describe the types of non-BACnet equipment/networks(s) that the gateway supports:

Property ID		Object Type		
		Device	Analog Value	Binary Value
#4	ACTIVE TEXT			V
#11	APDU_TIMEOUT	V		
#12	APPLICATION_SOFTWARE_VERSION	V		
#28	DESCRIPTION	V	V	V
#30	DEVICE ADDRESS BINDING	V	V	
#36	EVENT STATE		V	V
#44	FIRMWARE_REVISION	V		
#46	INACTIVE TEXT			V
#62	MAX_APDU_LENGTH_ACCEPTED	V		
#63	MAX_INFO_FRAMES	V		
#64	MAX_MASTER	V		
#70	MODEL_NAME	V		
#73	NUMBER_OF_APDU_RETRIES	V		
#75	OBJECT_IDENTIFIER	V *1	V	V
#76	OBJECT_LIST	V		
#77	OBJECT_NAME	V *1	V	V
#79	OBJECT_TYPE	V	V	V
#81	OUT OF SERVICE		V	V
#85	PRESENT VALUE		V *2	V *2
#87	PRIORITY ARRAY		V *3	V *3
#96	PROTOCOL_OBJECT_TYPES_SUPPORTED	V		
#97	PROTOCOL_SERVICES_SUPPORTED	V		
#98	PROTOCOL_VERSION	V		
#104	RELINQUISH DEFAULT		V *3	V *3
#107	SEGMENTATION_SUPPORTED	V		
#111	STATUS FLAGS		V	V
#112	SYSTEM_STATUS	V		
#117	UNITS		V	
#120	VENDOR_IDENTIFIER	V		
#121	VENDOR_NAME	V		
#139	PROTOCOL_REVISION	V		
#155	DATABASE_REVISION	V		

The Properties of Objects

*1. The Object_ID and Object_Name Properties of Device are writeable.

*2. The Present_Value Property of some AV and BV objects are commandable.

*3. Only Commandable objects support Priority_Array and Relinquish_Default.

• Commandable Analog Value Object

In VFD-CP2000, we have AV_000~AV_026 supporting commandable Present_Value property. In these AV_Objects, we also can use (Multi) Read_Service to access Priority_Array and Relinquish_Default properties.

Object Number	R/W	Object Name	Object Description	Unit
AV 000	RW	AV_000_Reserved	Reserved	UNITS_NO_UNITS
AV 001	RW	AV_001_FreqRefValue	Frequency Reference Value	UNITS_HERTZ
AV 002	RW	AV_002_Reserved	Reserved	UNITS_NO_UNITS
AV 003	RW	AV_003_Reserved	Reserved	UNITS_NO_UNITS
AV 004	RW	AV_004_Reserved	Reserved	UNITS_NO_UNITS
AV 005	RW	AV_005_Reserved	Reserved	UNITS_NO_UNITS
AV 006	RW	AV_006_Reserved	Reserved	UNITS_NO_UNITS
AV 007	RW	AV_007_Reserved	Reserved	UNITS_NO_UNITS
AV 008	RW	AV_008_Reserved	Reserved	UNITS_NO_UNITS
AV 009	RW	AV_009_Reserved	Reserved	UNITS_NO_UNITS
AV 010	RW	AV_010_Reserved	Reserved	UNITS_NO_UNITS
AV 011	RW	AV_011_P9-11 map set=	AV11 will modify data which is P9-11 mapping to	Depends
AV 012	RW	AV_012_P9-12 map set=	AV12 will modify data which is P9-12 mapping to	Depends
AV 013	RW	AV_013_P9-13 map set=	AV13 will modify data which is P9-13 mapping to	Depends
AV 014	RW	AV_014_P9-14 map set=	AV14 will modify data which is P9-14 mapping to	Depends
AV 015	RW	AV_015_P9-15 map set=	AV15 will modify data which is P9-15 mapping to	Depends
AV 016	RW	AV_016_P9-16 map set=	AV16 will modify data which is P9-16 mapping to	Depends
AV 017	RW	AV_017_P9-17 map set=	AV17 will modify data which is P9-17 mapping to	Depends
AV 018	RW	AV_018_P9-18 map set=	AV18 will modify data which is P9-18 mapping to	Depends
AV 019	RW	AV_019_P9-19 map set=	AV19 will modify data which is P9-19 mapping to	Depends
AV 020	RW	AV_020_P9-20 map set=	AV20 will modify data which is P9-20 mapping to	Depends
AV 021	RW	AV_021_P9-21 map set=	AV21 will modify data which is P9-21 mapping to	Depends
AV 022	RW	AV_022_P9-22 map set=	AV22 will modify data which is P9-22 mapping to	Depends
AV 023	RW	AV_023_P9-23 map set=	AV23 will modify data which is P9-23 mapping to	Depends
AV 024	RW	AV_024_P9-24 map set=	AV24 will modify data which is P9-24 mapping to	Depends
AV 025	RW	AV_025_P9-25 map set=	AV25 will modify data which is P9-25 mapping to	Depends
AV 026	RW	AV_026_P9-26 map set=	AV26 will modify data which is P9-26 mapping to	Depends

• Status (Readonly) Analog Value Object

In VFD-CP2000, we have AV_027~AV_068 with readonly Present_Value property. In these AV_Objects, we do NOT have Priority_Array and Relinquish_Default properties.

Object Number	R/W	Object Name	Object Description	Unit
AV 027	R	AV_027_Reserved	Reserved	UNITS_NO_UNITS
AV 028	R	AV_028_Reserved	Reserved	UNITS_NO_UNITS
AV 029	R	AV_029_Reserved	29_Reserved Reserved	
AV 030	R	AV_030_Reserved	Reserved	UNITS_NO_UNITS
AV 031	R	AV_031_Output frequency	Display output frequency(Hz)	UNITS_HERTZ
AV 032	R	AV_032_Reserved	Reserved	UNITS_NO_UNITS
AV 033	R	AV_033_Reserved	Reserved	UNITS_NO_UNITS
AV 034	R	AV_034_Reserved	Reserved	UNITS_NO_UNITS
AV 035	R	AV_035_Output torque (%)	Display output torque (%)	UNITS_PERCENT
AV 036	R	AV_036_Reserved	Reserved	UNITS_NO_UNITS
AV 037	R	AV_037_Reserved	Reserved	UNITS_NO_UNITS
AV 038	R	AV_038_Reserved	Reserved	UNITS_NO_UNITS
AV 039	R	AV_039_Status word	Display status word,made from BV16~BV31	UNITS_NO_UNITS
AV 040	R	AV_040_Reserved	Reserved	UNITS_NO_UNITS
AV 041	R	AV_041_Driver type code	Driver type code	UNITS_NO_UNITS
AV 042	R	AV_042_Warn code	Warn code	UNITS_NO_UNITS
AV 043	R	AV_043_Error code	Error code	UNITS_NO_UNITS
AV 044	R	AV_044_Output current	Display output current(Amp)	UNITS_AMPERES
AV 045	R	AV_045_DC-bus voltage	Display DC-BUS voltage(Volt)	UNITS_VOLTS
AV 046	R	AV_046_Output Voltage	Display output voltage of U, V, W(Volt)	UNITS_VOLTS
AV 047	R	AV_047_Count Value	Display counter value of TRG terminal	UNITS_NO_UNITS
AV 048	R	AV_048_Power Angle	Display output power angle of U, V, W	UNITS_POWER_FACT OR
AV 049	R	AV_049_Output Power	Display actual output power of U, V, W(kw)	UNITS_KILOWATTS
A) / A = -	R	AV_050_IGBT temperature	Display the IGBT temperature	UNITS_DEGREES_CE
AV 050				LSIUS
AV 051	R	AV_051_Temperature of driver	Display the temperature of capacitance	UNITS_DEGREES_CE LSIUS
AV 052	R	AV_052_Real carry frequency	Display real carrier frequency of the drive(KHz)	UNITS_KILOHERTZ
AV 053	R	AV_053_PID feedback value	Display PID feedback value (%)	UNITS_PERCENT
AV 054	R	AV_054_Overload rate	Display overload condition (%)	UNITS_PERCENT
AV 055	R	AV_055_Ground fail detect level	Display GND fail detect level (%)	UNITS_PERCENT
AV 056	R	AV_056_DC bus ripple	Display DCbus voltage ripples(Volt)	UNITS_VOLTS
AV 057	R	AV_057_Fan Speed	Fan speed of the drive (%)	UNITS_PERCENT
AV 058	R	AV_058_Output speed(rpm)	Output speed(rpm)	UNITS_REVOLUTION S_PER_MINUTE
Chapter 17 Introduction to BACnet | CP2000

Object Number	R/W	Object Name	Object Description	Unit
AV 059	R	AV_059_KW per Hour	KW per Hour	UNITS_KILOWATTS
AV 060	R	AV_060_Multi-speed switch	Real multi-speed switch	UNITS_NO_UNITS
AV 061	R	AV_061_AVI1 input value	0~10V corresponds to 0~100%	UNITS_PERCENT
AV 062	R	AV_062_ACI input value	4~20mA/0~10V corresponds to 0~100%	UNITS_PERCENT
AV 063	R	AV_063_AVI2 input value	0V~10V corresponds to 0~100%	UNITS_PERCENT
AV 064	R	AV_064_Digital input status	Refer to P2-12	UNITS_NO_UNITS
AV 065	R	AV_065_Digital output status	Refer to P2-18	UNITS_NO_UNITS
AV 066	R	AV_066_CPU pin status of DI	Corresponding CPU pin status of digital input	UNITS_NO_UNITS
AV 067	R	AV_067_CPU pin status of DO	Corresponding CPU pin status of digital output	UNITS_NO_UNITS
AV 068	R	AV_068_PLC D1043 value	PLC D1043 value	UNITS_NO_UNITS

• Commandable Binary Value Object

In VFD-CP2000, we have BV_000~BV_015 supporting commandable Present_Value property. In these BV_Objects, we also can use (Multi) Read_Service to access Priority_Array and Relinquish_Default properties.

Object Number	R/W	Object Name	Object Description
BV 000	RW	BV_000_ACTIVE CMD	(0)FreqCmd=0;(1)FreqCmd=FreqRefValue
BV 001	RW	BV_001_FWD/REV CMD	(0)Forward; (1)Reverse
BV 002	RW	BV_002_Reserved	Reserved
BV 003	RW	BV_003_HALT CMD	(0)None;(1)RampDown to 0Hz.
BV 004	RW	BV_004_LOCK CMD	(0)None;(1)OutputFreq stays at current frequency
BV 005	RW	BV_005_Reserved	Reserved
BV 006	RW	BV_006_QSTOP CMD	(0)None;(1)Force driver quick stop
BV 007	RW	BV_007_ServoPower CMD	(0)PowerOff(free run to stop);(1)PowerOn
BV 008	RW	BV_008_Reserved	Reserved
BV 009	RW	BV_009_Reserved	Reserved
BV 010	RW	BV_010_Reserved	Reserved
BV 011	RW	BV_011_Reserved	Reserved
BV 012	RW	BV_012_Reserved	Reserved
BV 013	RW	BV_013_Reserved	Reserved
BV 014	RW	BV_014_Reserved	Reserved
BV 015	RW	BV_015_RESET	RESET:(0)Do nothing;(1)Reset fault

• Status (Readonly) Binary Value Object

In VFD-CP2000, we have BV_016~BV_031 with readonly Present_Value property. In these BV_Objects, we do NOT have Priority_Array and Relinquish_Default properties.

Object Number	R/W	Object Name	Object Description
BV 016	R	BV_016_ARRIVE STATE	(0)Not yet;(1)Arrive (OutputFreq=FreqCmd)
BV 017	R	BV_017_FWD/REV STATE	(0)Forward;(1)Reverse
BV 018	R	BV_018_WARN STATE	(0)No Warn;(1)Occur Warn
BV 019	R	BV_019_ERROR STATE	(0)No Error;(1)Occur Error
BV 020	R	BV_020_Reserved	Reserved
BV 021	R	BV_021_Reserved	Reserved
BV 022	R	BV_022_QSTOP STATE	(0)No QSTOP;(1)Occur QSTOP
BV 023	R	BV_023_ServoPower STATE	(0)PowerOff(free run to stop);(1)PowerOn
BV 024	R	BV_024_Reserved	Reserved
BV 025	R	BV_025_Reserved	Reserved
BV 026	R	BV_026_Reserved	Reserved
BV 027	R	BV_027_Reserved	Reserved
BV 028	R	BV_028_Reserved	Reserved
BV 029	R	BV_029_Reserved	Reserved
BV 030	R	BV_030_Reserved	Reserved
BV 031	R	BV_031_Reserved	Reserved

[This page intentionally left blank]

Chapter 18 Safe Torque Off Function

- 18-1 The drive safety function failure rate
- 18-2 Safe Torque Off terminal function description
- 18-3 Wiring diagram
- 18-4 Parameter
- 18-5 Operating sequence description
- 18-6 New Error code for STO function

Item	Definition	Standard	Performance
STO	Safe Torque Off	IEC61508	Channel 1: 80.08% Channel 2: 68.91%
HFT (Type A subsystem)	Hardware Fault Tolerance	IEC61508	1
011	Sofoty Integrity Lovel	IEC61508	SIL 2
SIL		IEC62061	SILCL 2
PFH	Average frequency of dangerous failure [h-1]	IEC61508	9.56×10 ⁻¹⁰
PFDav	Probability of Dangerous Failure on Demand	IEC61508	4.18×10 ⁻⁶
Category	Category	ISO13849-1	Category 3
PL	Performance level	ISO13849-1	d
MTTFd	Mean time to dangerous failure	ISO13849-1	High
DC	Diagnostic coverage	ISO13849-1	Low

18-1 The drive safety function failure rate

18-2 Safe Torque Off terminal function description

The Safe Torque Off function is to cut off the power supply to motor through the hardware, thereby the motor couldn't produce torque.

The Safe Torque Off function controls the motor current drive signal respectively by two independent hardware, and thus cut off the inverter power module output in order to achieve the status of safety stop.

Operation Principle Description as below table 1:

Table 1: Terminal operation description

Si	ignal	Channel	Photo-coupler status			
s	STO	STO1~SCM1	ON (High)	ON (High)	OFF (Low)	OFF (Low)
si	gnal	STO2~SCM2	ON (High)	OFF (Low)	ON (High)	OFF (Low)
C	Driver Output status		Ready	STL2 mode (Torque output off)	STL1 mode (torque output off)	STO mode (Torque output off)

STO means Safe Torque Off

STL1~STL3 means Safe Torque Off hardware abnormal.

STL3 means STO1~SCM1 and STO2~SCM2 internal circuit detected abnormal.

STO1~SCM1 ON (High): means STO1~SCM1has connected to a +24VDC power supply.

STO2~SCM2 ON (High): means STO2~SCM2 has connected to a +24V power supply.

STO1~SCM1 OFF (Low): means STO1~SCM1hasn't connected to a +24VDC power supply.

STO2~SCM2 OFF (Low): means STO2~SCM2hasn't connected to a +24VDC power supply.

18-3 Wiring diagram

18-3-1Internal STO circuit as below:

18-3-2 In the figure below, the factory setting for +24V-STO1-STO2 and SCM1-SCM2-DCM is short circuit:

Chapter 18 Safe Torque Off Function | CP2000

18-3-3 The control loop wiring diagram:

- 1. Remove the shot-circuit of +24V-STO1-STO2 and DCM-SCM1-SCM2.
- 2. The wiring as below diagram. The ESTOP switch must at Close status in normal situation and drive will be able to Run.
- 3. STO mode, switch ESTOP open. Drive output stop and keypad display STO.

*1: factory short circuit of DCM-SCM1-SCM2. To use the Safety function, please remove this short circuit

*2: factory short circuit of +24V-STO1-STO2. to use the Safety function, please remove this short circuit.

Factory setting: 0

18-4 Parameter 《 대용 - 북북 STO Alarm Latch

Settings 0 : STO Alarm Latch 1 : STO Alarm no Latch

Pr06-44=0 STO Alarm Latch: after the reason of STO Alarm is cleared, a Reset command is needed to clear STO Alarm.

- Pr06-44=1 STO Alarm no Latch: after the reason of STO Alarm is cleared, the STO Alarm will be cleared automatically.
- All of STL1~STL3 error are "Alarm latch" mode (in STL1~STL3 mode, the Pr06-44 function is no effective).

×	82 - 13	Multi-function Output 1 (Relay1)	
			Factory Setting:11
N	82-14	Multi-function Output 2 (Relay2)	
			Factory Setting:1
N	82 - 15	Multi-function Output 3 (Relay3)	
		Settings	Factory Setting:66

66: SO N.O. logic A output 68: SO N.C. logic B output

Settings	Functions	Descriptions
66	SO Logic A output	Safety Output Normal Open
68	SO Logic B output	Safety Output Normal Close

CP2000 factory setting Pr02-15(Relay3)=66(N.O.) and Multi-function Output setting item has add 2 new function: 66 and 68.

	Safety Output status		
Drive status	N.O.	N.C.	
	(MO=66)	(MO=68)	
Normal run	Open	Close	
STO	Close	Open	
STL1~STL3	Close	Open	

Content of Multi-function Display

Settings 45: Hardware version

Factory setting: 3

00-04=45 Hardware version

18-5 Operating sequence description

18-5-1Normal operation status

As shown in Figure 3: When the STO1~SCM1 and STO2~SCM2=ON (no STO function is need), the drive will execute "Operating" or "Output Stop" according to RUN/STOP command.

Figure 3

18-5-2-1 STO , Pr06-44=0 , Pr02-35=0

As shown in Figure 4: When both of STO1~SCM1 and STO2~SCM2 channel has turned off during operating, the STO function enabling and the drive will stop output regardless of Run command is ON or OFF status.

Figure 4

18-5-2-2 STO , Pr06-44=0 , Pr02-35=1

As shown in Figure 5: As same as the figure 4. But, because the Pr02-35=1, therefore, after the Reset command, if the operating command still exists, the drive will immediately execute the run command again.

18-5-3 STO , Pr06-44=1 STO Alarm no latch

Figure 8

18-6 New Error code for STO function

06-17	Present Fault Record
81 - 38	Second Most Recent Fault Record
86 - 19	Third Most Recent Fault Record
86-28	Fourth Most Recent Fault Record
86-21	Fifth Most Recent Fault Record
86-88	Sixth Most Recent Fault Record
	Settings
	72 : Channel 1 (STO1~SCM1)internal hardware error
	76 : STO (Safe Torque Off)

- 77 : Channel 2 (STO2~SCM2)internal hardware error
- 78 : Channel 1 and Channel 2 internal hardware error

Error code	Name	Description
76	STO	Safe Torque Off function active
72	STL1 (STO1~SCM1)	STO1~SCM1 internal hardware detect error
77	STL2 (STO2~SCM2)	STO2~SCM2 internal hardware detect error
78	STL3	STO1~SCM1 and STO2~SCM2 internal hardware detect error

The Old/New control board and Old/New I/O card:

CP2000	v1.20 firmware	v1.21 firmware
v1.20 control board + old I/O card (no STO function)	OK	OK
v1.20 control board + new I/O card (with STO function)	Error	Error
v1.21 control board + old I/O card (no STO function)	Error	Error
v1.21 control board + new I/O card (with STO function)	Error	OK

Appendix A. Publication History

If you need to contact the technical engineer of this product, please let them know the issue edition of this user manual and corresponded firmware version.

Issue Edition: V02

Firmware Version: V2.03

Issue Date: November, 2017

Explanations	Coverage	
A	dd	
Add Apply After Service by Mobile Device	Chapter 1	
Add Delta Standard Fieldbus Cables	Chapter 8	
Add Adjustment and Application	Chapter 12-2	
Add Fire mode operating procedure, Bypass		
function operating time chart and Fire mode reset	Chapter 12-1, Group 06 Parameters	
procedure		
Rev	vise	
	Chapter 4	
	Chapter 6	
	Group 00 Parameters (00-04)	
	Group 02 Parameters (02-31)	
Revise terminals to AVI1, ACI & AVI2	Group 03 Parameters (03-03, 03-19, 03-23, 03-28,	
Update its connected terminals (remove -10V	03-52, 03-53, 03-54, 03-56, 03-62, 03-68)	
Terminal) and corresponded setting range	Group 06 Parameters (06-59)	
	Group 09 Parameters (09-04)	
	Group 13 Parameters (13-00)	
	Chapter 15	
	Chapter 17	
Revise setting range of multi-step speed parameters from 0.00~600Hz to 0.00~599.00Hz	Group 04 Parameters (04-00~04-14)	
Revise 690V EMC Filter Model	Chapter 7	
Update AC/DC input/output reactor spec. and corresponded Delta part number	Chapter 7	
Remove CANopen cables dimension & spec. chart and CANopen TAP dimension	Chapter 8	
Revise the setting range of the max. output	Chanter 0	
frequency from 600.00Hz to 599.00Hz and add	Croup 01 Peremeters (01.00)	
setting range of 575/690V	Group 01 Parameters (01-00)	
Revise the 575V/690V upper limit of over voltage protection to 1016/1189V	Chapter 9	
Delete explanation of MI8 impulse input and	Chapter 4	

related explanations	Chapter 9
	Group 02 Parameters (02-11)
Revise the output rating table of 690V model	Chapter 9
Change parameter description "Initial Angle Detection Pulse Level" and related explanations	Group 10 Parameters (10-42)
Update explanation of Fire Mode	Group 02 Parameters (02-08) Group 06 Parameters (06-86, 06-87)
Revise the voltage range of 575V and 690V series 575V: 1116.0V; 690V: 1318.0V	Group 06 Parameters (06-01)
Update the upper limit of over current and over voltage of Fault Code Description	Chapter 14